Quantcast
Channel: meccanica respiratoria – ventilab
Viewing all 20 articles
Browse latest View live

PEEP e pressione di plateau: quando la somma non fa il totale.

$
0
0

Posizione di Trendelenburg

Oggi parleremo di PEEP, pressione di plateau, driving pressure, elastanza (o compliance) e stress index come guida alla ventilazione meccanica.

Tutto questo ci può essere realmente utile nella pratica clinica. A prova di questo, condivido con gli amici di ventilab un caso che mi è capitato alcuni mesi fa. Sono convinto che alla fine saremo tutti d’accordo che sono concetti semplici e fondamentali nella vita (professionale) di tutti i giorni. Ero in sala operatoria per dare il cambio ad un collega anestesista. Amo l’anestesia e, nonostante il mio impegno full-time in Terapia Intensiva, concludo volentieri le mie giornate in sala operatoria. L’intervento in corso, iniziato da circa un’ora, era una resezione colica laparoscopica in un paziente settantenne obeso. Questo significa un intervento condotto con il paziente in posizione di Trendelenburg (con il letto operatorio inclinato con la testa in basso ed i piedi in alto) e l’addome insufflato di gas.

Era in corso una ventilazione a volume controllato (flusso inspiratorio costante) con 500 ml di volume corrente, 15/min di frequenza respiratoria, FIO2 0.5 e 5 cmH2O di PEEP. La ETCO2 era 41 mmHg, la SpO2 94%, la pressione di picco 35 cmH2O e quella di plateau (Pplat) 30 cmH2O. La curva di pressione delle vie aeree (Paw) e quella che vedi nella figura 1.

Figura 1

L’intervento sarebbe durato ancora due o tre ore (salvo complicazioni) ed il paziente era a rischio di complicanze respiratorie postoperatorie per età e durata dell’intervento (1). Sappiamo anche che una ventilazione inappropriata può indurre danni anche in un polmone sano (2). Quindi la ventilazione meccanica intraoperatoria potrebbe diventare un elemento importante per l’outcome del paziente. Cosa posso fare con i dati a disposizione?

Rispondiamo a due domande sempre fondamentali.

_°_°_°_°_°_°_°_°_°_

Prima domanda: la Pplat deve preoccuparmi?

In questo paziente l’addome schiaccia i polmoni: l’addome obeso, disteso di gas e più in alto del torace comprime il diaframma contro i polmoni. Possiamo quindi ragionevolmente ritenere di avere un’elevata elastanza (=bassa compliance) dell’apparato respiratorio dovuta alla rigidità della parete toracica (il diaframma va considerato parte della parete toracica). Alta elastanza significa che servono pressioni elevate per dare il volume corrente. Quando l’aumento dell’elastanza è attribuibile alla gabbia toracica sono elevate sia la pressione alveolare che quella pleurica: in questo caso la pressione transpolmonare (=pressione alveolare – pressione pleurica) è bassa e quindi basso è lo stress del polmone (per approfondimenti rivedi il post del 24 giugno 2011). In questo caso si può (a volte si deve) essere tolleranti verso Pplat elevate .

Prima risposta: la Pplat di 30 non mi preoccupa.

_°_°_°_°_°_°_°_°_°_

Seconda domanda: l’analisi grafica delle curva Paw-tempo (figura 1) mi fornisce qualche informazione?

Sono abituato a guardare sempre, come prima cosa, il monitoraggio grafico della ventiazione meccanica. Quel giorno mi aveva subito messo qualche dubbio il profilo arrotondato, con concavità verso il basso, della Paw. Questo potrebbe associarsi ad uno stress index < 1 e la necessità di aumentare la PEEP (vedi post del 15 agosto 2011). In sala operatoria non ho modo di calcolarmi lo stress index, devo quindi accontentarmi del dato qualitativo. Quindi aumento la PEEP a 15 cmH2O. Nella figura 2 puoi vedere cosa cambia (nella parte alta vedi i trendi grafici ed in basso le curve Paw-tempo).

Figura 2

E succede una cosa interessantissima: la Pplat resta esattamente uguale a prima, circa 30 cmH2O, (riga tratteggiata blu nella figura 2) pur mantenedo invariata la ventilazione (freccia viola). E scompare il profilo arrotondato con concavità verso il basso nella curva Paw-tempo, che diventa rettilinea (segno compatibile con uno stress index di circa 1) (vedi post del 15 agosto 2011).

Cosa può essere successo? A parità di volume corrente abbiamo ridotto la driving pressure, cioè la variazione di pressione attribuibile al volume corrente che è la differenza tra Pplat (la pressione con il volume corrente nei polmoni) e la PEEP totale (la pressione senza volume corrente nei polmoni). E questo si spiega con il miglioramento dell’elastanza (cioè una sua riduzione) con l’applicazione della PEEP. Infatti con PEEP 5 (il paziente non aveva PEEP intrinseca) e Pplat 30 l’elastanza era 50 cmH2O/l, con 15 di PEEP l’elastanza è diventata 30 cmH2O/l. E sappiamo che utilizzare la PEEP che riduce la driving pressure (e l’elastanza) può essere una efficace misura per ridurre il VILI (ventilator-induced lung injury), oltre a ridurre la mortalità nei pazienti con ARDS (vedi post del 10 aprile 2011).

Seconda risposta: il monitoraggio grafico mi fa intuire uno stress index < 1 e mi suggerisce un aumento della PEEP. Il monitoraggio grafico e il semplice calcolo della driving pressure (Pplat-PEEP) mi confermano di aver fatto la scelta giusta.

_°_°_°_°_°_°_°_°_°_

Questo caso fa capire come anche nella nostra routine la comprensione dei principi fondamentali su cui si fonda la ventilazione meccanica sia una preziosa risorsa. Molte altre considerazioni si potrebbero fare, ma siamo ormai arrivati a 850 parole: il buon senso mi suggerisce quindi di salutare e dare appuntamento a presto. Non prima però di avere riassunto i punti fondamentali di questo post:

1) il significato della Pplat dipende dalla pressione che l’addome esercita sul diaframma

2) è raccomandabile aumentare la PEEP quando si vede la Paw con una concavità verso il basso (ventilazione a flusso inspiratorio costante)

3) può essere opportuno scegliere il valore di PEEP che si associa alla minor driving pressure (a parità di volume corrente)

Bibliografia.

1) Shander A et al. Clinical and economic burden of postoperative pulmonary complications: Patient safety summit on definition, risk-reducing interventions, and preventive strategies. Crit Care Med 2011; 39:2163-72

2) Pinheiro de Oliveira R et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Critical Care 2010, 14:R39


Ventilazione a volume controllato o ventilazione a pressione controllata? Quale la migliore?

$
0
0

Spesso mi viene chiesto se è meglio utilizzare la ventilazione a pressione controllata o la ventilazione a volume controllato. Vediamo insieme cosa le differenzia per giungere ad una scelta consapevole.

Premetto che la cosa più importante è avere chiari gli obiettivi da raggiungere con la ventilazione: questi poi si possono raggiungere con qualunque modalità di ventilazione si consosca bene.

Come ben sappiamo, la pressione controllata applica una pressione costante nelle vie aeree per tutta la durata dell’inspirazione. Il risultato è un flusso inspiratorio che inizia con un picco e decresce durante l’inspirazione (fig. 1, a sinistra). Il volume controllato invece genera un flusso costante per tutta la durata dell’inspirazione e per ottenere ciò il ventilatore deve aumentare continuamente la pressione nelle vie aeree (fig. 1, a destra).

Figura 1.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di pressione tra volume controllato e pressione controllata.

Prima conseguenza di questa diversa logica di funzionamento è la differenza nelle pressioni di picco. A volte questo viene presentato come un vantaggio della pressione controllata sul volume controllato, ma lo è davvero?

La pressione di picco è la somma di due pressioni: 1) la pressione che ci serve per generare il flusso più 2) la pressione che espande l’apparato respiratorio.

La pressione che genera il flusso è quella forza che spinge il gas inspirato attraverso tubo tracheale e vie aeree. Essa ha il proprio valore massimo all’inizio della branca inspiratoria e si riduce progressivamente fino ad annullarsi al termine delle vie aeree. Il suo valore dipende dall’entità del flusso e dalle resistenze.

Alla fine della inspirazione la pressione per generare flusso è più elevata in volume controllato che in pressione controllata: infatti in volume controllato abbiamo ancora un flusso più elevato (uguale a quello di tutta la fase inspiratoria) che in pressione controllata, che a fine inspirazione vede il flusso più o meno completamente annullato (fig 1).

La pressione per generare flusso non arriva negli alveoli ma si consuma lungo il tubo tracheale e le vie aeree. Non deve essere considerata come una pressione che può indurre danno polmonare indotto dalla ventilazione (VILI, ventilator-induced lung injury) .

Alla fine della inspirazione, a parità di volume corrente, avremo la stessa pressione negli alveoli sia in volume controllato che in pressione controllata. E questa pressione (indipendente dalla modalità di ventilazione) dipende unicamente da elastanza e volume corrente. Questa pressione può essere stimata facendo un’occlusione delle vie aeree alla fine della inspirazione: nella figura 2 vediamo sopvrapposte due curve di volume controllato (PCV) e pressione controllata (PCV) a parità di volume corrente. Si può notare come le pressioni di picco siano diverse tra loro, mentre le pressioni di plateau sono uguali tra di loro. Stesso plateau, stesso stress.

Figura 2.

Quindi pressione controllata e volume controllato hanno, a parità di volume corrente, lo stesso impatto sul danno polmonare, che in realtà è determinato solo da elastanza e volume corrente.  Non lasciamoci trarre in inganno dalla diversità delle pressioni di picco. Si potrebbero fare disquisizioni più approfondite per i polmoni caratterizzati da marcata disomogeneità, ma affronterò l’argomento solo se vedrò che può interessare ai lettori di ventilab.

La pressione controllata fa raggiungere inoltre valori di pressione media delle vie aeree più elevata del volume controllato, a meno che a quest’ultimo non si aggiunga un’opportuna pausa di fine inspirazione. E la pressione media delle vie aeree è correlata all’ossigenazione. Si può quindi dire che in pressione controllata è più semplice ottimizzare pressione media delle vie aeree e ossigenazione.

 _°_°_°_°_°_°_°_°_°_°_

Le differenze di flusso tra volume controllato e pressione controllata.

Il volume controllato assicura l’erogazione di un predeterminato un flusso (e quindi un volume corrente), mentre il flusso che si genera in pressione controllata è variabile e dipende dalle variazioni della costante di tempo del paziente (cioè del rapporto tra resistenza ed elastanza). In alcuni casi può essere preferibile garantire un volume corrente costante: pensiamo ad esempio ai pazienti con trauma cranico ed ipertensione intracranica, dove la regolazione della PaCO2 è un obiettivo clinico importante. In altri casi può essere meglio limitare automaticamente le pressioni ed accettare variazioni del volume corrente, come ad esempio nei pazienti con ARDS ed elevate pressioni di plateau (o transpolmonari).

Un’altra differenza tra pressione controllata e volume controllato è la diversa distribuzione del flusso. Nella pressione controllata il flusso è elevato all’inizio dell’inspirazione, mentre nel volume controllato è uniforme per tutta l’inspirazione. Un elevato flusso inspiratorio iniziale favorisce la sincronia tra paziente e ventilatore se il paziente triggera gli atti respiratori. Quindi la pressione controllata ci può semplificare la sincronia paziente-ventilatore e la riduzione del lavoro respiratorio del paziente. Ovviamente anche un’oculata regolazione del volume controllato può raggiungere gli stessi obiettivi, ma sicuramente serve un occhio più esperto per gestire l’interazione paziente-ventilatore durante volume controllato (1,2).

 _°_°_°_°_°_°_°_°_°_°_

Le ventilazioni a pressione controllata a target di volume.

Quasi tutti i ventilatori hanno forme di ventilazione che rientrano in questa categoria: PCV-VG (GE), PRVC o VGRP (Maquet, Siemens), AutoFlow (Draeger), ecc. In pratica sono normalissime ventilazioni a pressione controllata in cui però il ventilatore continua ad adeguare la pressione applicata per raggiungere un volume prefissato. Quindi le impostiamo come un volume controllato (a parte la pausa) ma funzionano come una pressione controllata: pressione inspiratoria costante e flusso inspiratorio decrescente. In maniera molto semplice aggiungiamo alla pressione controllata il vantaggio principale del volume controllato: il volume costante. Ovviamente le pressioni potranno aumentare o diminuire secondo le necessità.

 _°_°_°_°_°_°_°_°_°_°_

Come scegliere tra volume controllato e pressione controllata.

Detto questo, mi sento di fare questa proposta nella scelta delle ventilazioni controllate ed assistite-controllate:

- scegliere di norma una ventilazione a pressione controllata a target di volume (PCV-VG, PRVC o VGRP, AutoFlow, ecc). E’ semplice da impostare ed unisce vantaggi di volume controllato e pressione controllata: garantisce il volume corrente, facilitando sincronia ed ossigenazione grazie al flusso decrescente. A questo punto bisogna solo scegliere il volume corrente ed il I:E giusti…

- quando abbiamo la necessità di limitare la pressione di plateau (esempio siamo già a 30 cmH2O di plateau), utilizzare la pressione controllata. Solitamente impostando PEEP e pressione controllata la cui somma non superi 31-32 cmH2O, ci si garantisce di rimanere sotto i 30 cmH2O di pressione di plateau. Meglio comunque verificare di caso in caso.

Un caro saluto a tutti.

PS: il workshop “La ventilazione non-invasiva: dalle evidenze scientifiche alla pratica clinica” si terrà quasi certamente sabato 28 gennaio 2011. A prestissimo la conferma definitiva.

Bibliografia.

1) Chiumello D et al. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 2002; 20: 925-33

2) Kallet RH et al. Work of breathing during lung-protective ventilation in patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50:1623-31

La pressione resistiva: 3 implicazioni pratiche.

$
0
0

Sicuramente il tubo qui a lato non è percorso da un flusso d’aria. Entrambe le estremità sono in comunicazione con l’ambiente e quindi hanno la stessa pressione (cioè la pressione atmosferica). E senza una differenza di pressione tra i due estremi non può esistere un flusso.

Se aumentiamo la pressione all’estremità prossimale del tubo (dove c’è il raccordo per la Y) si genera un flusso che va dall’estremo prossimale all’estremo distale del tubo (verso la cuffia), sempre aperto alla pressione atmosferica. L’entità del flusso è direttamente proporzionale alla differenza di pressione (dP) tra gli estremi del tubo ed inversamente proporzionale alla resistenza R del tubo: flusso = dP/R.

La differenza di pressione che genera il flusso è la pressione resistiva.

Ammettiamo che nel nostro tubo venga applicata una pressione di 8 cmH2O e che si ottenga un flusso di 1 l.s-1.*

Quanto sarà la pressione a metà del tubo? Possiamo riscrivere l’equazione del flusso (vedi sopra) come dP = flusso x R. Dalla legge di Hagen-Poiseuille sappiamo che R è direttamente proporzionale alla lunghezza del condotto: a metà tubo avremo metà resistenza. Nel nostro esempio, quindi, il dP tra la metà e la fine del tubo sarà la metà del dP totale, cioè 4 cmH2O. Per lo stesso ragionamento possiamo prevedere che la pressione interna al tubo dopo 1/4 della sua lunghezza sia di 6 cmH2O (cioè si sia ridotta di 1/4 del dP). Analogamente dopo 3/4 della lunghezza, la pressione si sarà ridotta di 3/4, sarà cioè di 2 cmH2O. Alla fine del tubo (o per meglio dire dove cessa il flusso che si disperde nell’atmosfera), la pressione è diventata uguale alla pressione atmosferica (figura 1, in alto).

Figura 1

Se il tubo si restringe, per mantenere lo stesso flusso bisogna applicare una pressione più elevata per vincere la resistenza più alta. Ma alla fine del tubo, in entrambi i casi, avremo la stessa pressione. La pressione resistiva è sempre 0 dove non c’è flusso (figura 1, in basso).

Nell’apparato respiratorio non c’è pressione resistiva in due casi:

  1. nelle vie aeree quando non c’è flusso: ad esempio durante le occlusioni di fine inspirazione o fine espirazione o durante un periodo di apnea:
  2. negli alveoli, anche se c’è flusso nelle vie aeree: il movimento di gas per differenza di pressione (cioè il flusso convettivo) di norma si esaurisce nei bronchioli terminali. Nei bronchioli respiratori, nei dotti alveolari e negli alveoli non vi è mai flusso convettivo ed i gas si spostano per differenza di pressione parziale (flusso diffusivo). Gli alveoli sono protetti dalla pressione resistiva.

Tre implicazioni pratiche delle considerazioni fisiologiche che abbiamo finora discusso sono:

  1. durante le manovre di occlusione delle vie aeree, non esiste flusso. Ne consegue che la pressione è uguale in tutti i punti dell’apparato respiratorio e che quindi la pressione che misuriamo nel ventilatore è uguale a quella degli alveoli. Ecco perchè la pressione di plateau, misurata a fine inspirazione, ci serve per guidare la ventilazione protettiva;
  2. la pressione di picco è misurata quando c’è flusso ed è la somma di pressione elastica, pressione resistiva e PEEP totale (vedi post del 24/06/2011). Non ci dà quindi informazioni sulla pressione alveolare perchè questa sarà più bassa in ragione della pressione resistiva necessaria per spingere quel flusso dal ventilatore ai bronchioli terminali. A questo punto è chiaro che se misuriamo la differenza tra pressione di picco e pressione di plateau conosciamo la pressione resistiva.
  3. La pressione resistiva aumenta se aumenta il flusso (dP=flusso x R). Quando vogliamo aumentare il tempo espiratorio (ad esempio nei pazienti con iperinflazione dinamica) dobbiamo ridurre inevitabilmente il tempo inspiratorio, Questo si traduce in aumento del flusso inspiratorio (=volume corrente/tempo inspiratorio). La conseguenza è l’aumento della pressione resistiva che induce un aumento della pressione di picco. Ma se questo è associato ad una riduzione della PEEP intrinseca, la pressione di plateau diminuisce ed i polmoni sono più protetti dal ventilator-induced lung injury (VILI) (figura 2).

Figura 2.

In conclusione, valutiamo sempre l’impatto della ventilazione al netto della pressione resistiva: è facile, basta fare un’occlusione delle vie aeree a fine inspirazione di 3 secondi e leggere la pressione di pausa che viene rilevata.

Un saluto a tutti gli amici di ventilab.

 

*Questo implica che la R del tubo sia di 8 cmH2O.l-1.s : R = dP/flusso -> R = 8 cmH2O / 1 l.s-1

 

Pressione transpolmonare e stress: attenzione agli equivoci!

$
0
0

Una delle cause di ventilator-induced lung injury (VILI) è lo stress, definito come la forza applicata alle pareti alveolari alla fine dell’inspirazione.

I cardini della ventilazione protettiva sono volti a limitare lo stress: ridurre il volume corrente è la premessa per ridurre la forza che agisce sugli alveoli. Questa forza è usualmente stimata dalla pressione di plateau a fine inspirazione: il limite di 30 cmH2O è ritenuto un’approssimazione dello stress massimo tollerabile dai  polmoni (1). Ricordiamo che la pressione di plateau si misura nelle vie aeree e si ottiene con un’occlusione di fine inspirazione di circa 3 secondi in un paziente passivo.

La pressione transpolmonare è la differenza tra la pressione interna agli alveoli (mediamente uguale alla pressione di plateau) e la pressione che si trova all’esterno degli alveoli (cioè la pressione pleurica durante l’occlusione di fine inspirazione) (2). Nella figura 1 puoi visualizzare il concetto: PALV è la pressione alveolare, PPL la pressione pleurica e PTPla pressione transpolmonare.

Figura 1.

Riassumendo: lo stress è la pressione transpolmonare che otteniamo sottraendo alla pressione di plateau misurata nelle vie aeree (cioè dentro gli alveoli) la pressione rilevata nella pleura durante l’occlusione di fine inspirazione.

Poichè la pressione pleurica non è facile da misurare, si è deciso di sostituirla con la pressione di una struttura che contigua alla pleura, cioè l’esofago toracico. La pressione in esofago è simile ma non è uguale a quella pleurica: mediamente, in un soggetto supino, è più elevata di circa 5 cmH2O (3).

Sembrerebbe tutto semplice, se non fosse che alcuni identificano lo stress con la variazione di pressione transpolmonare tra fine inspirazione e fine espirazione (4,5). A questo scopo si misura la pressione transpolmonare a fine espirazione (PEEP totale meno la pressione esofagea durante un’occlusione di fine espirazione) e la si sottrae alla pressione transpolmonare di fine inspirazione (vedi figura 2). In altre parole si valuta la variazione di pressione traspolmonare associata alla insufflazione.

 

Figura 2.


Quando si sente parlare di stress e ventilazione meccanica, bisogna capire bene a quale stress si fa riferimento: al valore della pressione transpolmonare a fine inspirazione o alla variazione inspiratoria della pressione transpolmonare.

Quale stress scegliere per ottimizzare la ventilazione nel paziente con ARDS?

Come sempre, cercherò di essere pragmatico e di giungere alla conclusione più utile nella pratica clinica.

Senza nulla togliere alla variazione inspiratoria di pressione transpolmonare (che peraltro è interessante perchè legata al concetto di  strain, un altro fattore che sembra essere coinvolto nel VILI), ritengo che allo stato attuale delle conoscenze si possa fare riferimento, nella pratica clinica, al solo stress identificato dalla pressione transpolmonare di fine inspirazione. Ci sono almeno quattro buoni motivi per fare questa scelta:

  1. la strategia di ventilazione meccanica che limita la pressione di plateau, identificata come stima dello stress, è efficace nel ridurre la mortalità nei pazienti con ALI/ARDS (1) . La pressione transpolmonare di fine inspirazione altro non è che il miglior modo per misurare la pressione di plateau;
  2. esiste un trial clinico che dimostra un miglioramento della funzione polmonare (e di fatto anche della mortalità) nei pazienti che affidano la limitazione dello stress alla pressione transpolmonare di fine inspirazione (6);
  3. la pressione transpolmonare di fine inspirazione, a differenza della variazione inspiratoria della pressione transpolmonare, include anche lo stress preinsufflazione, cioè il valore di pressione transpolmonare prima che inizi l’insufflazione (2);
  4. ultimo, ma non meno importante, la pressione transpolmonare a fine inspirazione è più semplice sia da calcolare e che da capire. E sappiamo che nella pratica clinica più le cose sono semplici, più è facile che siano realmente implementate.

E quale è il valore limite accettabile della pressione transpolmonare a fine inspirazione? Nel trial clinico sui pazienti con ARDS il limite massimo accettato era di 25 cmH2O. A mio parere questa soglia dovrebbe essere precauzionalmente abbassata: nella pratica clinica utilizziamo la pressione esofagea in sostituzione della pressione pleurica. Ma ricordiamo che la pressione esofagea è una sovrastima (vedi sopra) imprecisa della pressione pleurica (3,7); inoltre nella pleura vi sono differenti valori regionali di pressione: in posizione supina, a livello ventrale la pressione è più bassa di quella dorsale. Quindi per limitare efficacemente lo stress soprattutte nelle zone ventrali del polmone (dove si annida l’iperinflazione e con la più bassa pressione pleurica) ritengo sia prudente ridurre la soglia di pressione transpolmonare accettabile a 15-20 cmH2O.

Restano molte altre cose da dire sulla pressione transpolmonare, ma molte ne abbiamo già dette. Prossimamente approfondiremo ancora questo argomento, magari focalizzando l’attenzione su ciò che gli amici di ventilab riterrano più interessante.

Ciao a tutti ed a presto!

Bibliografia.

1) Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342: 1301–8

2) Loring SH et al. Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 2010; 108: 515–22

3) Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34:1389-94

4) Gattinoni L et al. The concept of “baby lung”. Intensive Care Med 2005; 31:776–84

5) Chiumello D et al. Lung stress and strain during mechanical ventilation for Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2008, 178:346–55

6) Talmor D et al. Mechanical ventilation guided by esophageal pressure in Acute Lung Injury. N Engl J Med 2008; 359:2095-104

7) Washko GR et al. Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol 2006; 100: 753-8

Sforzi inefficaci: quando i conti non tornano…

$
0
0

Alcuni giorni fa sono stato irresistibilmente incuriosito dall’immagine riprodotta qui sopra. Ero in reparto e chiacchieravo con alcuni colleghi, ad alcuni metri di distanza il monitor del sig. Giuliano su cui l’occhio mi cade distrattamente. La mia partecipazione alla conversazione si fa sempre più distratta,  la mia attenzione è calamitata dal monitoraggio grafico della ventilazione. Dopo alcuni istanti chiedo ai colleghi se hanno notato qualcosa di apparentemente strano. Lo chiedo anche a te: c’è qualcosa che ti fa riflettere?

Il sig. Giuliano è ricoverato da una decina di giorni con una encefalopatia postanossica, esito di un arresto cardiaco. E’ tracheotomizzato e ventila in pressione di supporto con l’impostazione riprodotta qui a fianco. Il risultato di questa impostazione possiamo capirlo  dal monitoraggio grafico riportato all’inizio del post. La schermata visualizza 10 secondi di ventilazione. Contiamo 5 atti inspiratori (e l’inizio di un sesto respiro) sulla traccia di flusso (quella verde al centro), quindi la frequenza respiratoria è leggermente superiore a 30/minuto. Il volume corrente (traccia azzurra in basso) è tra i 250 ed i 300 ml. Vediamo anche un profilo decrescente del flusso inspiratorio ed un’onda quasi quadrata di pressione delle vie aeree (traccia gialla in alto), segni che ci fanno riconoscere un elevato livello di supporto inspiratorio dopo il triggeraggio (vedi anche post del 8/05/2011 e del 30/05/2011).

E vediamo anche un evidentissimo sforzo inefficace nell’ultima espirazione, il cui dettaglio riproduciamo qui a fianco. Il flusso espiratorio si azzera una prima volta (punto 1), quindi riprende l’espirazione che termina una seconda volta nel punto 2, ed a questo punto finalmente arriva l’inspirazione successiva. Quanto accaduto nel punto 1 si definisce sforzo inefficace (ineffective triggering o ineffective effort) ed indica un’inspirazione abortita. Per attivare l’inspirazione il paziente deve abbassare la pressione nelle vie aeree al di sotto del valore di PEEP. Se i muscoli inspiratori non riescono a fare uno sforzo sufficiente, il flusso si annulla (o si riduce) ma l’inspirazione non parte (1).

Ma quello che mi ha distratto dalla conversazione con i colleghi non è stato lo sforzo inefficace, tutt’altro che raro durante la ventilazione meccanica (2), ma qualcos’altro. Gli sforzi inefficaci sono dovuti o alla pesenza di un trigger inspiratorio troppo “duro” o alla presenza di PEEP intriseca. Siccome non ventilo mai con trigger “duri”, mi aspetto di vedere segni di PEEP intrinseca insieme allo sforzo inefficace. E il segno che tutti conosciamo è l’interruzione del flusso espiratorio all’inizio dell’inspirazione (puoi vedere un esempio nel post del 25/03/2010) (3). E’ evidente la presenza di auto-PEEP nel sig. Giuliano? Guarda bene come finisce il flusso espiratorio: ti sembra che sia interrotto dall’inizio dell’inspirazione successiva? Sembra di no. Ed allora, come può esserci uno sforzo inefficace? E’ questo il punto che mi ha sottratto alla amena conversazione con i colleghi.

In questo caso la  PEEP intrinseca deve esserci. Nulla di più semplice che andare a verificarlo con una occlusione di fine espirazione. Ne riproduco qui sotto la traccia.

Abbiamo occluso le vie aeree a fine espirazione, il sig. Giuliano ogni tanto inspira (quando scende la pressione durante il periodo in cui il flusso resta a zero) e quando smette di inspirare si rilascia e la pressione si assesta su un plateau. Su uno di questi plateau abbiamo posizionato il cursore verticale bianco: la misurazione che vediamo sulla destra dell’immagine ci dice che abbiamo 7 cmH2O di PEEP totale. Visto che la PEEP  è 5 cmH2O, abbiamo una auto-PEEP di 2 cmH2O. Ora i conti tornano: lo sforzo inefficace è giustificato dalla presenza della PEEP intrinseca.

Ma come può esserci PEEP intrinseca se il flusso espiratorio non è amputato dall’inizio dell’inspirazione? La spiegazione nasce da un esame attento della curva di flusso espiratorio. Sappiamo che il flusso espiratorio passivo ha un decadimento esponenziale (vedi post del 12/03/2011), quindi ci dobbiamo aspettare una curva a concavità verso il basso. Nel nostro sig. Giuliano vediamo un flusso espiratorio lineare, come si vede nella figura sottostante in cui ho disegnato un segmento tratteggiato bianco sull’originale flusso espiratorio.

Un flusso espiratorio è lineare indica una sua decelerazione rispetto al comportamento passivo, in altre parole il flusso sta rallentando più rapidamente di quanto farebbe passivamente. C’è qualcosa che sta frenando l’aria che esce dalle vie aeree: l‘inizio graduale dell’attività inspiratoria che, prima di arrivare ad invertire il senso del flusso, lo rallenta. In questo caso non abbiamo la brusca interruzione dell’espirazione (cioè il classico segno di PEEP intrinseca), ma il delicato, progressivo e continuo rallentamento dell’espirazione. Per fare un esempio automobilistico, possiamo dire che con il freno (=l’inizio dell’inspirazione) non abbiamo “inchiodato” ma stiamo fermando la macchina dolcemente (come dovremmo fare sempre…). Il risultato è però sempre lo stesso: l’espirazione non termina per il passivo raggiungimento del volume di equilibrio elastico e quindi rimane un’iperinflazione dinamica.

In conclusione, questo post ci lascia due messaggi importanti:

1) la presenza di auto-PEEP può essere svelata non solo dalla ben nota evidente amputazione del flusso espiratorio, ma anche dal mancato decadimento esponenziale del flusso espiratorio;

2) uno sforzo inefficace è un segno di PEEP intrinseca (se il trigger inspiratorio è stato impostato correttamente).

Un saluto a tutti gli amici di ventilab.

Bibliografia.

1) Tobin MJ et al. Patient-ventilator interaction. Am J Respir Crit Care Med 2001; 163:1059-63

2) Thille AW et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32:1515-22

3) Laghi F et al. Auto-PEEP in respiratory failure. Minerva Anestesiol 2012;78:201-21

ARDS primitiva e secondaria: una distinzione utile o no?

$
0
0

Bentrovati a tutti, oggi propongo un tema di rilevanza pratica non immediata ma che penso possa essere egualmente interessante: le correlazioni tra eziopatogenesi, alterazioni anatomopatologiche, meccanica del sistema respiratorio e possibili effetti della terapia ventilatoria nella ARDS (acute respiratory distress syndrome).

La ARDS non è determinata da una causa eziopatogenetica definita, ma rappresenta una risposta aspecifica a svariati insulti patogeni, caratterizzata da insorgenza acuta, ipossiemia, infiltrati polmonari bilaterali, aumento dell’elastanza del sistema respiratorio e riduzione della capacità funzionale residua (per la definizione di ARDS vedi post del 24 giugno 2012).[1]

Schematicamente, la ARDS è detta primitiva (o primaria, o polmonare, ARDSp) se la noxa colpisce direttamente il parenchima polmonare (per esempio in caso di polmonite, aspirazione di contenuto gastrico, semi-annegamento, contusioni polmonari, inalazione di tossici, ecc.); si parla invece di ARDS secondaria (o extrapolmonare, ARDSexp) se la noxa agisce indirettamente sui polmoni, attraverso una reazione infiammatoria sistemica acuta (per esempio in caso di sepsi grave, trauma maggiore, by-pass cardiopolmonare, trasfusioni massive, pancreatite acuta, ecc.).[1]

Spesso la differenziazione tra le due diverse modalità di lesione è facile, come nel caso di polmoniti primarie, oppure di pancreatite; talvolta però l’identificazione del meccanismo è più dubbia, come in caso di traumi o di chirurgia cardiaca.[2]

La distinzione tra i due tipi di ARDS non è solo speculativa: a partire dagli anni ’90 sono state identificate alcune caratteristiche anatomopatologiche, morfologiche e fisiopatologiche che spesso differenziano le due forme, almeno nelle fasi iniziali (cioè nella prima settimana dall’insorgenza)*, e che possiamo così sintetizzare:

  • anatomia patologica:

- ARDSp: la struttura primariamente danneggiata è l’epitelio alveolare, con aumento della sua permeabilità, attivazione di macrofagi, riduzione di surfattante e inondamento intraalveolare da parte di essudato ricco in fibrina, collagene, aggregati neutrofilici: si ha tendenza precoce e al consolidamento delle aree colpite e alla fibrosi. Il liquido di lavaggio bronco-alveolare (BAL) è ricco di citokine infiammatorie.
- ARDSexp: i mediatori della flogosi, prodotti a livello extrapolmonare, raggiungono per via ematica e danneggiano primariamente l’endotelio dei capillari alveolari, con incremento della permeabilità, attivazione di monociti, neutrofili e piastrine, formazione di microtrombi, congestione capillare e edema interstiziale; gli spazi intraalveolari sono relativamente risparmiati ma il maggior peso dell’interstizio imbibito causa secondariamente collasso e atelettasia delle aree del polmone sottoposte alla forza di gravità (quelle posteriori, se il paziente è allettato). Il BAL è relativamente povero di citokine.[3]

  • radiologia:

- ARDSp: prevalente coinvolgimento multifocale e asimmetrico dei polmoni, con più o meno estese aree di consolidamento parenchimale (opacità molto dense) miste a zone di addensamento tipo vetro smerigliato (meno dense).
- ARDSexp: distribuzione più simmetrica e uniforme di aree di addensamento a vetro smerigliato (come risultato di un danno interstiziale diffuso) associata a zone dorsali di consolidamento da atelettasia.[4]

  • meccanica respiratoria:

- ARDSp: l’aumentata elastanza del sistema respiratorio è attribuibile prevalentemente all’aumentata rigidità dei polmoni.
- ARDSexp: l’aumentata elastanza del sistema respiratorio è attribuibile più spesso all’aumentata rigidità della parete toracica, in particolare al diaframma e all’aumentata pressione intraaddominale. [5]

 

Ma quali ricadute pratiche può avere questa diversità tra le due condizioni?

Sebbene numerosi studi, sia clinici, sia su modelli animali, suggeriscano che in caso di ARDSexp i polmoni siano più facilmente reclutabili in seguito all’applicazione della pressione positiva (PEEP, manovre di reclutamento, sospiri intermittenti) o in seguito alla pronazione del paziente rispetto alla ARDSp, altre osservazioni non confermano queste conclusioni. Schematicamente, la PEEP favorirebbe la riapertura di alveoli collassati atelettasici nell’ARDSexp, mentre nell’ARDSp non sarebbe sufficiente a riespandere le aree consolidate e rischierebbe di determinare sovradistensione delle unità già areate. Le ragioni della incongruenza di risultati tra i diversi studi possono essere molte: difficoltà ad attribuire con certezza molti casi di ARDS ad una delle due categorie, eterogeneità del livello di gravità e della fase di evoluzione della malattia, uso di farmaci vasoattivi o impatto della gittata cardiaca sugli scambi gassosi, differenze in pressione transpolmonare ottenuta a parità di pressione applicata nelle vie aeree, solo per citarne alcune.[6] Probabilmente per analoghi motivi anche i dati sulla mortalità delle due forme di ARDS sono sostanzialmente incongruenti nel rilevare differenze.[6]

In conclusione, indipendentemente dal meccanismo eziopatogenetico che pensiamo di aver individuato[7], nel trattamento dell’ARDS dobbiamo per ora continuare ad attenerci ai criteri della ventilazione protettiva ricavabili dalla letteratura accreditata, individualizzando per quanto possibile la ventilazione alle caratteristiche del paziente che stiamo curando.
Se la risposta clinica del paziente ai trattamenti corroborerà la nostra ipotesi patogenetica, questo post avrà forse raggiunto il suo scopo.

Un caro saluto a tutti.

 

* L’evoluzione successiva è grosso modo comune alle due forme e consiste in progressiva proliferazione fibroblastica e distruzione lobulare, con esito finale in fibrosi associata a rarefazione interstiziale.

 

 

Bibliografia

  1. Bernard GR, et al. The American-European Consensus Conference on ARDS: Definitions, mechanisms, relevant outcomes and clinical trial coordination. Am J Respir Crit Care Med 1994; 149:818-24

  2. Pelosi P, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J 2003; 22: Suppl. 42, 48s-56s

  3. Rocco PR, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome: are they different? Curr Opin Crit Care 2005; 11:10-17

  4. Goodman LR et al. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlation. Radiology 1999; 213:545-552

  5. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes? Am J Respir Crit Care Med 1998; 158:3-11

  6. Rocco PR et al. Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality? Curr Opin Crit Care 2008; 14:50–55

  7. Thille AW et al. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome. Anesthesiology 2007; 106:212-217

INFERMIERI DI TERAPIA INTENSIVA CHE RICONOSCONO LE ASINCRONIE DURANTE VENTILAZIONE MECCANICA

$
0
0

Mi sono imbattuto in questo agile lavoro (uno degli autori è Villar) e sono stato colpito dal titolo che ho trovato stimolante dal momento che alcuni dei nostri infermieri, grazie agli stimoli di Beppe, si sono addentrati nella conoscenza del monitoraggio grafico della ventilazione meccanica. Penso che dalla sua lettura si possano ricavare alcuni utili insegnamenti 

 

 Cosa hanno fatto gli autori?

Uno studio osservazionale in cui hanno raccolto le curve di flusso e pressione di 8 pazienti ricoverati in terapia intensiva e ventilati meccanicamente, hanno realizzato delle immagini (in formato JPEG) di 1024 respiri, li hanno sottoposti a 5 medici intensivisti esperti in ventilazione meccanica che, in modo cieco l’uno rispetto all’altro, le hanno classificate per la presenza o meno di sforzi inefficaci (o come “inclassificabile”); tre risposte concordanti hanno permesso di classificare le immagini. A questo punto gli autori dello studio hanno identificato due nurses esperte (4 anni di servizio) in terapia intensiva polivalente e per 2 ore al giorno per 20 giorni le hanno addestrate (con letture scientifiche e attività sul campo) a riconoscere la presenza o meno di sforzi inefficaci.

 

 

I risultati sono espressi come sensibilità, specificità, valore predittivo positivo (PPV) e negativo (NPV), ed con un indice di concordanza κ, che misura quanto le risposte degli esaminandi sono in accordo con quelle degli esperti, ritenuto buono se > 0,41 ed eccellente per valori > 0,75. Le due nurse hanno ottenuto risultati differenti ma buoni per entrambe: la prima ha riportato sensibilità = 92,5% e specificità = 98,3%, con un PPV del 95,4% , un NPV del 97,1% ed un κ di 0,92; la seconda sensibilità = 98,5% e specificità = 84,7%, PPV = 70,7% e NPV del 99,3% con un κ di 0,74.

La letteratura è concorde nel sottolineare come la presenza di asincronie tra paziente e ventilatore sia un fattore in grado di prolungare la durata della ventilazione meccanica, la degenza in terapia intensiva ed in ospedale. Dal punto di vista fisiopatologico possono determinare aumento del lavoro respiratorio. Quindi individuarle può favorire il raggiungimento degli obiettivi terapeutici.

Dal momento che gli infermieri lavorano a stretto contatto con il paziente, questo lavoro di riconoscimento potrebbe essere svolto dall’infermiere addestrato, lasciando la risoluzione dei problemi al medico. L’addestramento permetterebbe all’infermiere di acquisire competenze ulteriori rispetto a quelle in suo possesso, con maggiore gratificazione e probabilmente maggiore affezione al proprio attuale lavoro. Questo studio mostra che con un impegno inferiore ad un mese è possibile ottenere buoni risultati. Già ora un infermiere in terapia intensiva deve saper riconoscere un onda di lesione o una aritmia potenzialmente letale al monitor ECG: perché non potrebbe (dovrebbe!) riconoscere anche un’asincronia al monitor del ventilatore?

Resta imperativo che il medico deve approfondire la terapia ventilatoria, sia in termini di monitoraggio grafico (interazione paziente – ventilatore), sia in termini di corrette terapie e di soluzione dei problemi. E’ necessario un progetto per formare gli infermieri più motivati al riconoscimento del monitoraggio grafico; a loro volta infermieri esperti potranno formare altri infermieri sotto la supervisione del medico responsabile del progetto. Questa competenza va poi inserita correttamente nella propria realtà clinica a beneficio dei pazienti.

Insomma lavoro e studio per tutti!

 

Bibliografia

Chacón E, et al. Nurses’ Detection of Ineffective Inspiratory Efforts During Mechanical Ventilation. Am J Crit Care. 2012 Jul;21(4).

Thille AW, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515-1522.

de Wit M, et al . Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37(10):2740-2745.

ARDS e pressione di plateau: il limite di 30 cmH2O non può bastare.

$
0
0



Oggi riparliamo di ARDS, una delle malattie polmonari acute in cui una buona ventilazione meccanica può fare la differenza tra la vita e la morte. Sarà con noi la signora Pina, una donna di 68 anni che circa un mese fa è stata ricovera in Terapia Intensiva per una ARDS secondaria ad una polmonite comunitaria (qui di fianco puoi vedere la radiografia del torace al ricovero in Terapia Intensiva).  L’insufficienza respiratoria è grave (PaO2/FIO2 75 mmHg), ma in 48 ore si ottiene un buon miglioramento della funzione polmonare  (PaO2/FIO2 190 mmHg) senza problemi di ventilazione meccanica. Qui però il miglioramento si ferma e dopo circa una settimana vediamo una progressione degli infiltrati polmonari ed una nuova grave ipossiemia. Si cambiano gli antibiotici per coprire i germi ospedalieri e si inizia ventilazione protettiva con PCV-VG (vedi post del 27/11/2011) con volume corrente di 280 ml, frequenza respiratoria 33/min, PEEP 10 cmH2O, FIO2 0.8.  L’emogasanalisi arteriosa è la seguente: PaO2 83 mmHg, pH 7.43, PaCO2 64 mmHg. E come sempre prestiamo attenzione al monitoraggio della pressione delle vie aeree durante una fase di ventilazione a volume controllato: ecco il tracciato.
Osserviamo che durante la breve pausa di fine inspirazione inserita nella ventilazione la pressione delle vie aeree è 25 cmH2O, quindi la pressione di plateau sarà un po’ più bassa, ben al di sotto del limite massimo suggerito di 30 cmH2O. Infatti la pressione di plateau dopo 3 secondi di occlusione delle vie aeree è di 22 cmH2O, come puoi vedere nell’immagine qui sotto.

Tutto bene? Possiamo per valutare se possiamo aumentare la PEEP e quindi favorire una miglior ossigenazione?

Nemmeno per sogno, qui probabilmente dobbiamo ridurre ancora di più le pressioni nelle vie aeree. Infatti durante la ventilazione in volume controllato è quello di osservare la forma della salita della pressione nelle vie aeree. In altre parole si può fare una valutazione “occhiometrica” dello stress index (vedi post del 15/08/2011 e del 28/08/2011). In breve, la pressione delle vie aeree (nei pazienti in volume controllato passivi alla ventilazione) deve crescere linearmente, se invece la pendenza continua ad aumentare durante l’insufflazione dobbiamo temere che ci possa essere iperinflazione e stress. Un occhio allenato può aver già notato una condizione di potenziale pericolo nella signora Pina, nonostante le basse pressioni nelle vie aeree. Questo comportamento è reso più evidente nell’immagine sottostante:

Abbiamo tracciato segmenti lineari (tratteggiati in grigio) sul tracciato di pressione delle vie aeree che hai visto all’inizio del post. La pendenza di questi segmenti è uguale alla pendenza della parte iniziale della salita della pressione delle vie aeree (escluso il primo pezzettino quasi verticale): in questo modo si vede benissimo che la parte finale della salita della pressione ha una pendenza più ripida della parte iniziale. Questo è un possibile segno di sovradistensione polmonare, indipendentemente dal livello di pressione di plateau.

Come sempre, in questi casi abbiamo misurato la pressione esofagea ed ecco cosa ci ha detto:

La pressione esofagea è la traccia grigia, la traccia rossa è la pressione delle vie aeree. La pressione che vedi all’inizio della traccia è la parte finale di un’occlusione di fine espirazione, la pressione verso la fine della traccia è il plateau ottenuto con l’occlusione a fine inspirazione. Vediamo subito che la pressione di plateau delle vie aeree è bassa (i 22 cmH2O già visti sopra), ma è anche molto bassa la pressione esofagea corrispondente (3 cmH2O). La pressione transpolmonare (stimata con la pressione esofagea) è la differenza tra le due, cioè 19 cmH2O. Sappiamo che la pressione esofagea può sovrastimare la pressione pleurica di 5 cmH2O (in media) (1), quindi la pressione transpolmonare “vera” (pressione alveolare – pressione pleurica) potrebbe essere intorno ai 25 cmH2O (vedi post del 07/02/2012). Questi valori di pressione transpolmonare sono tutt’altro che bassi, soprattutto se si associano ad altri segni di sovradistensione (come lo stress index): due indizi fanno una prova. Tralascio (per esigenze di spazio) la valutazione della relazione statica pressione volume e la scelta della best PEEP, ed arriviamo subito alla strategia ventilatoria conseguente alle riflessioni che abbiamo fatto finora.

Per ridurre le pressioni nelle vie aeree non possiamo ridurre ulteriormente il volume corrente, quindi abbiamo agito sulla PEEP (sulla guida della valutazione della driving pressure a diverse PEEP, vedi post del 10/04/2011) riducendola a 6 cmH2O.

Il risultato è stato questo:

una riduzione della pressione di plateau da 22 a 15 cmH2O e riduzione della pressione transpolmonare (stimata con la pressione esofagea) da 19 a 13 cmH2O. Inoltre lo stesso volume corrente è stato ottenuto con una minore differenza di pressione tra fine inspirazione e fine espirazione (driving pressure). Quando avevamo 10 cmH2O di PEEP, per insufflare 275 ml dovevamo fare salire la pressione da 10 cmH2O (il valore di PEEP) a 22 cmH2O (la pressione di plateau): 12 cmH2O di differenza. Con 6 cmH2O di PEEP, questa differenza si riduce a 9 cmH2O (15 – 6 cmH2O): lo stesso volume ottenuto con meno pressione vuol dire miglioramento della compliance con la riduzione della PEEP.

Ed i segni di sovradistensione sulla curva di pressione? Eccome come sono diventati:

Sono praticamente scomparsi: insomma, un successo dal punto di vista della ventilazione protettiva valutata sulla meccanica respiratoria.

E il risultato all’emogasanalisi? Niente di eccezionale: dopo una decina di ore PaO2 77 mmHg, pH 7.46, PaCO2 72 mmHg, FIO0.7. Abbiamo accettato, come sempre, questi valori ampiamente sufficienti per sopravvivere (anche se esteticamente brutti) ed abbiamo continuato sulla nostra strada.

Nella settimana successiva miglioramenti lentissimi, abbiamo sospeso la sedazione passando in APRV e quindi gradualmente in PSV. Quando eravamo già pronti alla tracheotomia (dopo 15 giorni di intubazione), abbiamo fatto un trial di respiro spontaneo che la paziente ha tollerato, pur persistendo una chiara ipossiemia (PaO2/FIO141 mmHg). E’ stato comunque deciso di procedere all’estubazione, proseguendo con ventilazione noninvasiva. Un po’ di bravura, un po’ di fortuna una settimana dopo la paziente è stata dimessa dalla Terapia Intensiva in Riabilitazione…

Questa lunga storia ci ribadisce alcuni punti importanti nella cura dei pazienti con ARDS:

-  la ventilazione deve essere guidata dalla necessità di essere protettivi e non di migliorare l’emogasanalisi (per vivere è più che sufficiente una PaOdi 55 mmHg e l’ipercapnia non è un problema in assenza di gravissima acidosi);

- la pressione di plateau inferiore a 30 cmH2O non è da solo sufficiente sufficiente per gestire la ventilazione protettiva nei pazienti con le forme più gravi di ARDS;

- monitoraggio grafico della ventilazione, stress index (misurato o “occhimetrico”), scelta della minor driving pressure  ed eventualmente pressione esofagea sono irrinunciabili come guida della ventilazione nei pazienti con ARDS grave e pressioni di plateau maggiori o uguali a 25 cmH2O.

Un caro saluto a tutti.

 

Bibliografia.

1) Talmor D et al. Esophageal and transpulmonary pressures in acute respiratory failure. Crit Care Med 2006; 34:1389-94

 

PS: sarò assente per una dozzina di giorni, risponderò volentieri ai commenti appena posso.


P0.1 (pressione di occlusione delle vie aeree): cosa è, come utilizzarla.

$
0
0

Molti amici di ventilab mi hanno chiesto di dedicare un po’ di spazio alla P0.1. Volentieri affronto quindi l’argomento, anche perchè la possibilità di misurare la P0.1 è sempre più frequente sui nostri magnifici ventilatori meccanici. E, come tutte le cose, la si deve conoscere bene per usarla in maniera appropriata.

La P0.1 è sempre stata un oggetto un po’ misterioso per chi non si dedica specificatamente alla fisiopatologia respiratoria. Ricordo a tal proposito un episodio che risale ad oltre 20 anni fa: ad un congresso un chairman poco esperto di fisiopatologia respiratoria doveva moderare una sessione in cui c’era una relazione sulla P0.1, che fu presentata in questo modo: “Ed ora abbiamo il piacere di sentire una interessantissima relazione del dott. xxxxxxx sulla PO1″ (il problema fu che invece di “zero” lesse “O” come la lettera dell’alfabeto!). Niente di male, solo la sfortuna di doversi occupare (soprattutto allora) di un argomento spesso riservato agli “iniziati”….

Cosa è la P0.1

La P0.1, che nella letteratura scientifica è chiamata anche pressione di occlusione delle vie aeree (airway occlusion pressure), è la misura della riduzione della pressione (P) delle vie aeree nel primo decimo di secondo (da qui il nome 0.1) di un’inspirazione con vie aeree occluse.

Chiariamo meglio il concetto con una rappresentazione grafica. Guardiamo la seconda curva (quella della pressione delle vie aeree Paw) nella figura a lato. La prima linea tratteggiata verticale indica il momento in cui inizia un’inspirazione triggerata dal paziente. Per misurare la P0.1 questa inspirazione deve iniziare contro una via aerea occlusa per almeno 0.1 secondi ed il paziente deve essere ignaro di questa occlusione. Essendo la via aerea occlusa, in questi 0.1 secondi il paziente non riceverà alcuna insufflazione dal ventilatore (non riuscirà quindi nemmeno ad attivare il trigger) e si avrà una riduzione della pressione nelle vie aeree. La differenza di pressione delle vie aeree tra valore di fine espirazione e quello rilevato dopo 0.1 secondi di occlusione è la P0.1.

Perchè il paziente non deve essere consapevole di questa occlusione? Perchè proprio 0.1 secondi? La P0.1 viene proposta come misura del drive respiratorio centrale, cioè del livello di attivazione del centro del respiro. Tanto maggiore è il drive respiratorio, tanto maggiore sarà la forza con cui i muscoli respiratori si contraggono e quindi la depressione che essi generano contro una via aerea occlusa. A noi interessa quindi la pressione sviluppata dai muscoli respiratori per effetto della sola attività involontaria del centro respiratorio. Quindi tutte le influenze corticali devono essere abolite e per ottenere questo risultato il soggetto deve essere inconsapevole. Quando però occludiamo le vie aeree, introduciamo una perturbazione rispetto alla normale attività respiratoria che potrebbe essere percepita dal soggetto e quindi modificarne l’output del centro respiratorio. Si ritiene però che nel breve lasso di tempo di 0.1 secondi l‘occlusione non sia percepita e quindi l’attività dei muscoli respiratori non possa essere influenzata. Nello studio di Whitelaw, Derenne e Milic-Emili che introdusse la P0.1 nella fisiologia applicata , si osservò che solo dopo 0.25 secondi si notavano segni suggestivi di modificazioni dell’attività del centro del respiro indotte dall’occlusione delle vie aeree.

Limiti della P0.1.

Ammetto di avere una certa diffidenza verso la P0.1. Prima di tutto perchè ritengo che non sia mai stato dimostrato in modo convincente che la P0.1 sia un buon indicatore quantitativo del drive respiratorio.

Nello storico studio di Whitelaw sono stati arruolati solo 10 giovani maschi sani di età compresa tra i 15 ed i 34 anni ed è stata solamente valutata la variazione della P0.1 con l’ipercapnia. Nemmeno studi successivi non hanno mai chiaramente validato la P0.1 come misura del drive respiratorio.

Inoltre nei pazienti con disturbi neuro-muscolari la P0.1 può non riflettere il drive respiratorio: anche se questo fosse elevato, la capacità di generare pressione da parte dei muscoli respiratori è ridotta a causa del danno nervo-muscolare. E siamo ormai sempre più consapevoli che questo è un problema frequente in Terapia Intensiva (ICU-acquired weakness, ventilatory induced diaphragmatic dysfunction). A questo va aggiunto che la P0.1 può essere alterada variazioni del volume polmonare di fine espirazione (generate dalla PEEP o dalla PEEPi), che possono alterare la relazione tra tensione muscolare e pressione sviluppata.

Infine l’utilizzo della P0.1 nella ricerca clinica è stato a volte improprio e comunque ha portato a risultati contrastanti: quindi pochissimi dati convincenti dalla letteratura scientifica.

Utilizzo pratico della P0.1.

Consapevoli di questi limiti, la P0.1 può essere comunque di aiuto al letto del paziente. Vediamo un possibile approccio pratico all’utilizzo della P0.1.

1) P0.1 < 1-2 cmH2O.
Analizzando il resto dei dati a nostra disposizione, dobbiamo capire quale di queste tre condizioni è vera:
a) l’assistenza ventilatoria è eccessivamente elevata: questo mette “a riposo” il centro del respiro e quindi la P0.1 è bassa. Implicazione pratica: riduciamo il livello di supporto; se quest’ultimo non fosse in realtà molto elevato, potrebbe essere una buona idea far fare al paziente un bel trial di respiro spontaneo (se tutte le altre condizioni per il weaning sono presenti);
b) il paziente è sedato: la sedazione deprime il centro del respiro, puoi usare la P0.1, insieme agli altri monitoraggi, per ottimizzare il livello di sedazione;
c) il paziente è affetto da debolezza muscolare: questo è da sospettare soprattutto se la riduzione del supporto inspiratorio determina un respiro rapido e superficiale associato a bassi valori di P0.1. In questo caso è utile misurare la MIP (maximum inspiratory pressure)  o la NIF (negative inspiratory force) con uno sforzo massimale del paziente a vie aeree chiuse.

2) P0.1 > 5-6 cmH2O.
In questo caso l’interpretazione è più semplice: il drive respiratorio è elevato, in altre parole il cervello del paziente “sente” fame d’aria e stimola il paziente a respirare intensamente. Quando abbiamo una P0.1 elevata, il paziente ha elevate è probabilità di fallire lo svezzamento dalla ventilazione meccanica; dovremo anzi incrementare il supporto ventilatorio (o fare un uso giudizioso deilla sedazione).

Per valori intermedi (quindi 3-4 cmH2O), la P0.1 offre una segnale facilmente interpretabile.

Possiamo quindi concludere che la P0.1 non è un numero magico (come del resto pochi ce ne sono in medicina), ma che può, nell’ottica di una valutazione multiparametrica della ventilazione, migliorare la nostra conoscenza del paziente ventilato e quindi il modo di utilizzare la ventilazione meccanica.

Un caro saluto a tutti.

Bibliografia.

- Alberti A et al. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 1995; 21:547-53
- Berger KI et al. Mechanism of relief of tachypnea during pressure support ventilation. Chest 1996; 109:1320-7
- Del Rosario N et al. Breathing pattern during acute respiratory failure and recovery. Eur Respir J 1997; 10:2560-5
- de Souza LC et al. Comparison of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the prediction of weaning outcome: impact of the use of a digital vacuometer and the unidirectional valve.Respir Care 2012; 57:1285-90
- Fernandez R et al. P0.1/PIMax: An index for assessing respiratory capacity in acute respiratory failure. Intensive Care Med 1990; 16:175-9
- Fernandez R et al. Extubation failure: Diagnostic value of occlusion pressure (P0.1) and P0.1-derived parameters. Intensive Care Med 2004; 30:234-40
- Hilbert G et al. Airway occlusion pressure at 0.1 s (P0.1) after extubation: An early indicator of postextubation hypercapnic respiratory insufficiency. Intensive Care Med 1998; 24:1277-82
- Mancebo J et al. Airway occlusion pressure to titrate Positive End-expiratory Pressure in patients with dynamic hyperinflation. Anesthesiology 2000; 93: 81-90
- Milic-Emili J et al. Occlusion pressure: a simple measure of the respiratory center’s output. N Engl J Med 1975; 293:1029-30
- O Perrigault PF et al. Changes in occlusion pressure (P0.1) and breathing pattern during pressure support ventilation. Thorax 1999; 54:119-23
- Sassoon CSH et al. Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis 1993; 148:860-6
- Whitelaw WA et al.Occlusion pressure as a measure of respiratory center output im conscious man. Respir Physiol 1975; 23:181-99

Costante di tempo e ventilazione a pressione controllata.

$
0
0

mcEsher01Il post di oggi mi è stato suggerito dal commento che Andrea ha fatto ad un vecchio post: “come è possibile in pressione controllata con PEEP 15 e PCV 15 ottenere un plateau di 24?“.

La risposta alla domanda di Andrea può essere data solo se si comprende a fondo un concetto fondamentale per la ventilazione in pressione controllata: la costante di tempo dell’apparato respiratorio.

La costante di tempo è una caratteristica di tutte le funzioni esponenziali, ma qui considereremo ovviamente solo la sua applicazione all’inspirazione.

L’inspirazione può essere descritta da una funzione esponenziale solo quando è la conseguenza dell’applicazione di una pressione costante ad un apparato respiratorio in condizioni di rilasciamento muscolare. E’ quello che avviene durante la ventilazione a pressione controllata, in cui scegliamo un livello di pressione costante da mantenere per tutta l’inspirazione. Vediamo qui sotto un esempio della curva di pressione durante la ventilazione a pressione controllata.

pcv_insp

Il valore di pressione costante durante l’inspirazione condiziona il volume massimo che può essere erogato al paziente: il massimo volume erogabile è dato dal prodotto della pressione applicata (cioè il livello di pressione inspiratoria sopra PEEP) per la compliance dell’apparato respiratorio. La compliance infatti esprime la variazione di volume per ogni cmH2O applicato: una compliance di 60 ml/cmH2O vuol dire, ad esempio, che il volume dell’apparato respiratorio aumenta di 60 ml per ogni cmH2O di pressione applicata. Se, per ipotesi, applicassimo 12 cmH2O di pressione inspiratoria ad un paziente con 60 ml/cmH2O di compliance, potremmo al massimo ottenere un volume inspiratorio di 720 ml. Il volume realmente erogato dipende, in ogni istante, dal tempo trascorso dall’inizio dell’inspirazione, dalla costante di tempo e dal volume massimo teorico.

La costante di tempo (che si misura in secondi) descrive la velocità con cui l’apparato respiratorio raggiunge il suo massimo volume teorico. Quando dall’inizio dell’insufflazione è trascorso un tempo uguale alla costante di tempo, in quel momento sarà stato erogato un volume pari al 63% del volume massimo teorico. Se il paziente dell’esempio precedente avesse una costante di tempo di 0.8″, dopo 0.8″ dall’inizio dell’inspirazione avrebbe ricevuto 454 ml di volume, ovvero il 63% di 720 ml. Dopo un tempo pari a 3 volte la costante di tempo (nel nostro ipotetico paziente dopo 2.4″) il volume erogato sarà il 95% del volume massimo teorico (713 ml) e per arrivare di fatto ad eguagliare il volume massimo teorico (99%) servono circa 5 costanti di tempo (cioè 4″ nel paziente dell’esempio).

La costante di tempo è  uguale al prodotto della compliance per la resistenza dell’apparato respiratorio (è uno dei modi per calcolarla, se dovesse interessare ne potremmo riparlare in un prossimo post). Se il paziente dell’esempio precedente avesse una resistenza di 10 cmH2O.l-1.sec, la sua costante di tempo sarebbe 0.6″ (per il calcolo la compliance deve essere espressa in litri/cmH2O e quindi diventa 0.06 l/cmH2O). Ne consegue che qualsiasi aumento della resistenza o della compliance determina un aumento direttamente proporzionale della costante di tempo.

La costante di tempo gioca un ruolo decisivo nel volume erogato e nel significato della pressione delle vie aeree durante pressione controllata.

pcv_tau_fastCi saranno alcuni pazienti in cui il volume erogato aumenta rapidamente (=costante di tempo breve). Quando il volume insufflato raggiunge il volume massimo teorico, la pressione alveolare diventa uguale alla pressione di insufflazione del ventilatore (la pressione alveolare è uguale al rapporto volume/compliance, vedi post del 24/06/2011): quando la pressione applicata dal ventilatore e quella alveolare sono uguali, non esiste più alcuna differenza di pressione tra ventilatore ed alveoli e quindi cessa il flusso inspiratorio. Si crea di fatto una pausa nella parte finale dell’inspirazione. A sinistra puoi vedere un esempio di questo comportamento. Il paziente ha una costante di tempo chiaramente breve e già a metà inspirazione ha ottenuto il volume massimo ed inizia quindi una pausa.

Quando vediamo una pausa nel flusso inspiratorio nella ventilazione a pressione controllata, abbiamo almeno due informazioni importanti:
1) la pressione di fine inspirazione (cioè la pressione di picco) è già ottenuta in assenza di flusso, quindi è una pressione che può approssimare la pressione di plateau, che normalmente misuriamo facendo l’occlusione delle vie aeree a fine inspirazione proprio per avere una pausa di flusso. Quindi la differenza tra la pressione di picco e la pressione di plateau sarà minima (spesso 1-2 cmH2O), imputabile solamente a fenomeni redistributivi e viscoelastici (credetemi sulla parola…) che si completano quando prolunghiamo la pausa con una vera e propria manovra di occlusione mantenuta 3-4 secondi. In queste condizioni la pressione di picco è quindi una buona approssimazione della pressione di plateau e può darci informazioni sullo stress (la distensione dell’apparato respiratorio a fine inspirazione);
2) l’aumento della frequenza respiratoria è efficace ad aumentare la ventilazione/minuto. Infatti aumentando la frequenza respiratoria, si riduce inevitabilmente il tempo inspiratorio (a parità di I:E). In questo caso la riduzione del tempo inspiratorio non determina riduzioni del volume corrente perchè il volume massimo è già stato ottenuto ben prima della fine del tempo inspiratorio.

pcv_tauMolti pazienti non si comportano però in questo modo perchè hanno una costante di tempo più lunga. Qui sulla destra vediamo le curve del monitoraggio respiratorio di un paziente con una costante di tempo maggiore rispetto all’esempio precedente. Sottolineo che in questo momento non ci poniamo l’obiettivo di misurare la costante di tempo, ma solo di capire dal monitoraggio grafico della ventilazione meccanica se siamo di fronte ad un caso di costante di tempo lunga o breve.

Questo paziente alla fine dell’inspirazione non ha certamente raggiunto il volume massimo teorico: la sua lunga costante di tempo determina un aumento lento del volume polmonare (e quindi della pressione alveolare). La conseguenza della persistente differenza tra pressione del ventilatore meccanico e pressione alveolare a fine inspirazione è la presenza di flusso a fine inspirazione. Le implicazioni di questo comportamento saranno molto diverse rispetto al caso precedente:
1) la differenza tra pressione di picco e pressione di plateau in questo caso è dovuta a 2 diverse componenti: a) i fenomeni redistributivi e viscoelastici sopracitati (che in questo caso, per motivi piuttosto complicati che tralasciamo, potrebbero essere quantitativamente maggiori rispetto ai pazienti con costante di tempo breve); b) l’occlusione delle vie a fine inspirazione interrompe un flusso ancora presente e quindi determina la scomparsa della pressione resistiva (che è una delle componenti della pressione delle vie aeree, vedi l’equazione di moto nel post del 24/06/2011) . Poichè la pressione resistiva è data dal prodotto del flusso per le resistenze, il calo di pressione dovuto all’interruzione del flusso sarà tanto maggiore quanto più alto è il flusso alla fine dell’inspirazione e quanto più elevate sono le resistenze delle vie aeree (vedi post del 5/12/2011 e del 20/10/2013). Adesso possiamo quindi rispondere compiutamente alla domanda iniziale di Andrea: ”come è possibile in pressione controllata con PEEP 15 e PCV 15 ottenere un plateau di 24?“. Questo può avvenire facilmente in un paziente con costante di tempo relativamente lunga:  perchè l’interruzione del flusso a fine inspirazione avviene ancora con flusso presente e quindi la pressione resistiva è rilevante, soprattutto se il paziente ha elevate resistenze (ecco come può formarsi un circolo vizioso: alte resistenze->lunga costante di tempo->elevato flusso a fine inspirazione->alta pressione resistiva a causa sia del flusso che delle resistenze!)
2) l’aumento di frequenza respiratoria sarà poco efficace ad aumentare la ventilazione/minuto a parità di pressione inspiratoria. Infatti la riduzione del tempo inspiratorio interrompe sempre più precocemente il flusso, riducendo quindi il volume corrente. Questo fenomeno può essere poi amplificato dall’aggravarsi dell’iperinflazione dinamica che consegue alla riduzione del tempo espiratorio.

Riassumiamo e confrontiamo nella figura qui sotto le differenze delle curve di flusso e volume con costante di tempo breve (a sinistra) e lunga (a destra) e come cambia il volume dimezzando il tempo inspiratorio.

pcv_tau_volComplicato? Certamente! A mio parere la ventilazione a pressione controllata è densa di insidie e dovrebbe essere utilizzata, nei casi più complessi, solo se si padroneggia la meccanica respiratoria ed il monitoraggio grafico della ventilazione meccanica.

Oggi abbiamo detto molte cose, ma come sempre cerchiamo di far emergere un messaggio pratico: la costante di tempo condiziona in modo rilevante la ventilazione a pressione controllata. Possiamo distinguere due casi paradigmatici:

1) il flusso inspiratorio si azzera prima della fine del periodo inspiratorio (=> costante di tempo breve):
- la pressione di picco può essere una stima approssimata per eccesso della pressione di plateau;
- la variazione della frequenza respiratoria non modifica il volume corrente e quindi il suo effetto sulla ventilazione è prevedibile;
- la gestione della ventilazione a pressione controllata è facile.

2) il flusso inspiratorio è ancora presente alla fine del periodo inspiratorio (=> costante di tempo lunga):
- la pressione di picco può essere sensibilmente più elevata della pressione di plateau: è quindi necessario affidarsi all’occlusione delle vie aeree a fine inspirazione per stimarla;
- la variazione della frequenza respiratoria può modificare (anche in modo rilevante) il volume corrente e quindi il suo effetto sulla ventilazione è imprevedibile. Ad ogni cambio di impostazione del ventilatore bisogna quindi controllare l’effetto sul volume corrente;
- la ventilazione a pressione controllata diventa insidiosa e dovrebbe essere  affidata a medici esperti.

Un sorriso a tutti gli amici di ventilab.

ONE LUNG VENTILATION

$
0
0

La ventilazione monopolmonare (“one lung ventilation” o OLV) è parte integrante delle tecniche anestesiologiche nella chirurgia del polmone e dell’esofago toracico nelle quali, come nella maggior parte della chirurgia toracoscopica, sono richiesti il decubito laterale del paziente, l’apertura del torace ed il collasso del polmone “superiore” (“non dependent”) per consentire l’atto chirurgico. L’ipossia è la problematica di maggior rilievo durante questo tipo di ventilazione e chirurgia e si presenta in circa il 10% dei pazienti; restano ancora dibattuti quali provvedimenti siano adeguati a contrastarla (se e quanta PEEP, FiO2 uguale o inferiore a 1, reclutamenti). E’ però progressivamente cresciuta la consapevolezza che l’insorgenza d’insufficienze d’organo postoperatoria può essere correlata alla condotta intraoperatoria e prevenuta anche con l’utilizzo di bassi volumi correnti.

Ipossia e OLV

Due fenomeni sono determinanti nella genesi dell’ipossia (1)

  • lo shunt vero

  • il mismatch ventilazione/perfusione

Inoltre la posizione sul fianco (2) influisce, con l’effetto della gravità, sia sulla distribuzione del flusso sia sulla creazione di atelettasie; in particolare la posizione sul fianco consente migliore ossigenazione rispetto alla supina e di questo si deve tener conto qualora la ventilazione monopolmonare sia richiesta in posizione supina. Lo shunt vero è determinato dal fatto che il polmone non dipendente è escluso dalla ventilazione ma perfuso; è limitato dal fenomeno della vasocostrizione ipossica (HPV). Nel preoperatorio va ottimizzato il trasporto d’ossigeno e la portata cardiaca mantenuta stabile intraoperatoriamente, incrementi sovranormali della gittata possono aggravare lo shunt per riduzione della vasocostrizione ipossicae per l’apertura di ulteriori vasi in territori non perfusi. Il mismatch ventilazione/perfusione, è condizionato dal dereclutamento o dalla sovradistensione. Il dereclutamento incrementa la quota di perfusione rispetto al volume alveolare; la sovradistensione riduce la perfusione per “strizzamento” dei vasi alveolari e riduzione della perfusione di alveoli ventilati, contemporaneo incremento delle resistenze polmonari e shunt verso distretti non ventilati.

Va ormai sempre più affermandosi il concetto che volumi correnti “ridotti” (6-8 ml pro Kg di peso corporeo ideale nella ventilazione bipolmonare e 5-6 nella monopolmonare) sono in realtà fisiologici. Allo stesso modo si stanno imponendo evidenze che volumi correnti elevati sono certo efficaci nel determinare migliori ossiemie, ma sicuramente in grado di scatenare risposte infiammatorie responsabili di complicanze postoperatorie polmonari ed extrapolmonari, facendo seguito a quanto ormai acquisito per l’ARDS.

Nella produzione scientifica più recente viene quindi consigliato di utilizzare, in anestesia ed in particolare in ventilazione monopolmonare, volumi correnti bassi con PEEP adeguata e manovre di reclutamento, in associazione con FiO2 inferiori (almeno in partenza) a 1.

Tuttavia, se i principi fisiopatologici sono chiari, è difficile trovare in letteratura indicazioni chiare ed applicabili in clinica per la gestione della ventilazione monopolmonare. Quindi mi sono parsi degni d’attenzione due articoli pubblicati lo scorso anno.

Attenti a quei due… trial

Nel primo (3) 12 pazienti sono stati sottoposti in maniera sequenziale a due modalità di ventilazione, definite “convenzionale” e “open lung“, in tre fasi dell’anestesia: bipolmonare supino, monopolmonare in decubito laterale con toracotomia, riespansione del polmone dopo resezione polmonare. In entrambi i gruppi il volume corrente era di 5-6 ml/Kg e la ventilazione “open lung” era in pressione controllata con rapporti I:E di 2:1 – 4:1 facendo in modo che ogni inspirazione cominciasse quando il flusso espiratorio del respiro precedente fosse arrivato a 0 L/min.

studio1

La P di lavoro (Paw) è stata inizialmente fissata a 30 cm H20, un valore arbitrariamente selezionato per il reclutamento polmonare, e la pressione di fine espirazione (RP) è stata regolata per mantenere un Vt di 5-6 ml/kg. Dopo 2 minuti, la Paw veniva ridotta a step di 2 cm H20 e la RP regolata, a ogni livello,  per mantenere un Vt = 5-6 ml/kg.  Ad ogni livello di pressione, la Compliance statica è stata calcolata come Vt / (Paw – RP).  La Paw è stata registrata a flusso “0″ (equivalente ad un plateau prolungato in VCV).  Paw e RP sono stati quindi impostati al livello che ha prodotto la maggior compliance (cioè il volume corrente desiderato con la minor differenza di pressione) del sistema respiratorio.

Le conclusioni sono abbastanza minimaliste e ci dicono che questa tecnica (open lung) studiata nella ventilazione monopolmonare ottimizza la meccanica respiratoria e migliora gli scambi gassosi.

Nel secondo lavoro (4) trenta pazienti sono stati randomizzati in due gruppi, ventilati con 8 ml/Kg e poi con 5-7 in monopolmonare: entrambi ricevevano una manovra di reclutamento all’inizio e alla fine della ventilazione monopolmonare. Il gruppo di controllo veniva ventilato con PEEP = 5 cmH2O mentre quello di studio con una PEEP personalizzata grazie ad un trial decrementale. In particolare veniva impostata una ventilazione a pressione controllata con 20 cm H2O e PEEP = 5 incrementata di 5 cm H2O alla volta ogni dieci respiri fino a 20: una volta raggiunto il valore di 40 cmH2O (20 di PCV + 20 di PEEP) questa veniva mantenuta per 40 secondi. A questo punto veniva ridotta la PEEP di 2 cmH2O alla volta ogni due minuti, fino a ottenere la miglior Compliance (dinamica). Quindi dopo una nuova manovra di reclutamento, si ventilavano i pazienti in volume controllato con la miglior PEEP individuata.

table

Gli Autori concludono che, durante la ventilazione monopolmonare, il miglioramento dell’ossigenazione dopo reclutamento è meglio mantenuto dall’impiego di una PEEP individualizzata rispetto ad una PEEP standard.

Quindi quali outcome, in entrambi gli studi, variazioni di parametri fisiopatologici e nessuna incidenza di complicanze, mortalità e quant’altro!

Cosa possiamo imparare?

I due trial utilizzano metodiche di ventilazione tra loro diverse, uno anche poco usuali in anestesia come i rapporti invertiti, e caratterizzate dall’uso combinato di più provvedimenti (reclutamenti, PEEP e misura della compliance) e questo può rendere difficile identificare l’efficacia dei singoli fattori. Finora l’applicazione di una PEEP standard, nei vari trial su pazienti in anestesia e non solo in ventilazione monopolmonare, ha dato risultati imprevedibili in termini di ossigenazione. I due trial raggiungono risultati “limitati” ma sono interessanti per il metodo che possono insegnarci e cui possiamo approcciarci con senso critico. Ritengo infatti che l’approccio proposto, basato sulla ricerca della miglior compliance e personalizzazione della PEEP, abbia l’innegabile vantaggio di:

  • minimizzare il mismatch evitando il dereclutamento o la sovradistensione del polmone

  • lasciarci scegliere, solo a questo punto, quanta FiO2 è necessaria per ottenere la PaO2 desiderata

Confermano inoltre la mia esperienza che non è vero che più è grave l’ipossiemia maggiore deve essere la PEEP.

L’uso dei reclutamenti si è dimostrato utile in alcune categorie di pazienti in anestesia (obesi, laparoscopia) ma non mi sento di consigliarla come manovra routinaria. Diverso è il caso del paziente gravemente ipossico e che necessita di alte FiO2, come può accadere nella ventilazione monopolmonare.

Per quanto riguarda la prevenzione delle insufficienze d’organo postoperatorie c’è ormai consenso sull’impiego di volumi correnti “fisiologici”. Pur non potendo traslare acriticamente le pratiche adottate in terapia intensiva, è anche vero che, nei pazienti critici, la personalizzazione della PEEP (5) e l’impostazione della ventilazione ricercando la migliore compliance (6) hanno dato risultati favorevoli in termini di insufficienze d’organo e di outcome e che questa potrebbe essere una pratica anestesiologica altrettanto efficace in pazienti chirurgici ad alto rischio, per esempio quelli sottoposti a ventilazione monopolmonare.

Un saluto a tutti gli amici di Ventilab.

Bibliografia

  1. Levin AI et al.Arterial oxygenation and one-lung anesthesia. Curr Opin Anaesthesiol 2008, 21:28–36

  2. Szegedi LL et al. Gravity is an important determinant of oxygenation during one-lung ventilation.Acta Anaesthesiol Scand 2010; 54: 744–750

  3. Downs JB et al. Open lung ventilation optimizes pulmonary function during lung surgery. journal of surgical research 2014; 192:242-49

  4. Carlos Ferrando et al. Setting Individualized Positive End-Expiratory Pressure Level with a Positive End-Expiratory Pressure Decrement Trial After a Recruitment Maneuver Improves Oxygenation and Lung Mechanics During One-Lung Ventilation. Anesth Analg 2014;118:657–65

  5. Villar J et. A high positive end-expiratory positive pressure, low tidal volume ventilatory strategy improve uotcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-1318.

  6. Amato M. et al. Driving Pressure and Survival in the Acute Respiratory Distress Syndrome.N Engl J Med 2015;372:747-55.

Ventilazione meccanica volumetrica o pressometrica nel paziente ostruttivo grave?

$
0
0

daisyAffrontiamo ora un tema rimasto aperto nella discussione al post precedente: è meglio una modalità volumetrica o pressometrica per la ventilazione meccanica nei pazienti con grave patologia ostruttiva acuta ed iperinflazione dinamica?

Per rispondere a questa domanda, vediamo cosa succede applicando una ventilazione a volume controllato o a pressione controllata allo stesso paziente ostruttivo. Per poter facilmente manipolare ventilazione e meccanica respiratoria, utilizzeremo i dati e le curve di pressione e flusso generati con un modello matematico a cui specifichiamo le caratteristiche del paziente e l’impostazione della ventilazione.(nota 1)

Dopo aver attribuito al paziente una elevata resistenza delle vie aeree ed una elastanza sostanzialmente normale (una situazione simile a quella del paziente protagonista del post precedente), cerchiamo di ventilarlo “bene” sia in volume controllato che in pressione controllata. Teniamo conto che il nostro paziente è in fase acuta, in ventilazione controllata ed ha una grave ipotensione. Date queste premesse, una buona ventilazione meccanica dovrebbe ridurre al minimo la PEEP totale, sia per migliorare il ritorno venoso e quindi la portata cardiaca, sia per ridurre la pressione di plateau, qualora ve ne fosse bisogno. Possiamo quindi condividere che, indipendentemente da volumetrica o pressometrica, dovremo erogare un volume corrente normale (ricordiamo che in fisiologia è normale un volume corrente di circa 6-7 ml/kg di peso ideale) lasciando un lungo tempo espiratorio. Quindi potremmo impostare una ventilazione iniziale con 450 ml di volume corrente senza PEEP, 12/min di frequenza respiratoria, 1” di tempo inspiratorio e 4” di tempo espiratorio, ed una rampa di 0.1”. Ovviamente questa impostazione dovrà essere rivalutata alla luce dei risultati ottenuti (ad esempio per decidere se e quanta PEEP applicare).

Impostiamo quindi una pressione controllata ed un volume controllato, scegliendo il livello di pressione controllata che consente di ottenere lo stesso volume corrente della ventilazione a volume controllato. Vediamo le curve di pressione e flusso nelle due modalità di ventilazione in figura 1.

Figura 1.

Figura 1.

In ventilazione a pressione controllata abbiamo dovuto applicare un livello di pressione di 35 cmH2O per erogare 450 ml di volume corrente (curva in alto a sinistra). In volume controllato abbiamo invece raggiunto una pressione di picco di 40 cmH2O per assicurarci lo stesso volume corrente (curva in alto a sinistra).

Possiamo considerare un vantaggio della pressione controllata la riduzione della pressione delle vie aeree rispetto al volume controllato? Ritengo di no, come forse avranno intuito i lettori più attenti di ventilab. Cerchiamo di capire il perché.

La pressione che leggiamo sul display e sulle curve del ventilatore meccanico è la pressione NEL VENTILATORE e NON NEI POLMONI del paziente.

Durante l’insufflazione, il flusso aereo si sposta dal ventilatore al paziente perché nel ventilatore c’è una pressione più alta rispetto a quella del parenchima polmonare. Al contrario, in espirazione l’aria esce dai polmoni perché questi hanno una pressione più alta rispetto a quella del ventilatore. E’ una legge molto semplice: il flusso si sposta dal punto in cui la pressione è più elevata a quello in cui è più bassa. In termini matematici si può esprimere questo concetto con la formula V’=dP/R, dove V’ è il flusso, dP la differenza di pressione tra il punto di partenza e quello di arrivo del flusso ed R la resistenza che si oppone al flusso. Quindi quando c’è flusso la pressione nel ventilatore è sempre diversa dalla pressione nei polmoni.

Ritorniamo al nostro caso: la ventilazione a pressione controllata consente di avere 5 cmH2O di pressione in meno rispetto al volume controllato nel VENTILATORE. Mantiene questo vantaggio anche nel PARENCHIMA POLMONARE?

Per rispondere a questa domanda dobbiamo necessariamente misurare la pressione intrapolmonare. Ricordando la relazione V’=dP/R, possiamo anche dire che ventilatore e polmoni hanno la stessa pressione quando non c’è flusso (e le vie aeree sono pervie). Con una pausa del flusso alla fine della inspirazione, consentiamo alla pressione nel ventilatore e nel parenchima polmonare di equilibrarsi: la pressione che leggiamo nel ventilatore sarà quindi simile a quella intrapolmonare.

Eseguiamo nel nostro paziente “modello” l’occlusione delle vie aeree a fine inspirazione durante la ventilazione a pressione controllata e durante quella in volume controllato e misuriamo le rispettive pressioni di plateau (figura 2).

Figura 2.

Figura 2.

Con entrambe le ventilazioni abbiamo 14 cmH2O di pressione di plateau (curve in alto). Un dato ampiamente prevedibile: la pressione di plateau è INDIPENDENTE dalla modalità di ventilazione, ed è determinata unicamente dal volume corrente erogato, dall’elastanza dell’apparato respiratorio e dalla PEEP totale. Le strutture alveolari sono esposte (in media) alla pressione di plateau ed è questo il motivo per cui si utilizza la pressione di plateau (e non quella di picco) per guidare la ventilazione protettiva.

Da quanto abbiamo detto ne consegue necessariamente che, a parità di volume erogato, ventilazione pressometrica e volumetrica devono essere considerate equivalenti in termini di protezione dal danno associato alla ventilazione meccanica.

Spesso nella pratica clinica la ventilazione pressometrica viene adottata per limitare la pressione di picco nelle vie aeree, senza però badare alla riduzione di volume corrente ad essa associata. Penso sia ora evidente che potremmo ottenere un risultato analogo (in termini di pressione alveolare) se scegliessimo una ventilazione a volume controllato con riduzione del volume corrente. La differenza è data dal volume corrente e non dalla modalità di ventilazione.

Durante la fase di ventilazione controllata (quindi con paziente prevalentemente passivo), a volte preferisco la ventilazione a volume controllato per alcuni piccoli vantaggiosi effetti “secondari” di questa scelta: 1) obbliga a prendere decisioni esplicite (e quindi consapevoli) sul volume corrente, senza affidarsi alla sua riduzione imprevedibile (e casuale!) legata alla riduzione della pressione applicata; 2) consente di avere sempre sott’occhio una breve pressione di pausa di fine inspirazione (se questa è introdotta nell’impostazione della ventilazione). Questa consente di avere in evidenza una stima approssimativa della pressione di plateau; 3) la valutazione qualitativa della curva di pressione offre informazioni anche su altri segni di possibile sovradistensione polmonare, come ad esempio lo stress index.

Le considerazioni che abbiamo fatto finora ci fanno concludere che anche nel paziente ostruttivo in fase acuta e sottoposto a ventilazione controllata:

1) la diatriba tra ventilazione volumetrica e pressometrica è fuorviante, quello che è veramente importante è scegliere il volume corrente appropriato da raggiungere;

2) il risultato di ogni ventilazione controllata nei pazienti con insufficienza respiratoria dovrebbe essere valutato anche alla luce della pressione di plateau e della PEEP totale.

Un sorriso a tutti gli amici di ventilab.

 

nota 1: Non entro nei dettagli del modello. I risultati sono affidabili, anche se le curve di pressione e flusso sono “squadrate”, per effetto dei cambi istantanei del segnale che il modello genera.

Strain, compliance e driving pressure nella ventilazione protettiva dei pazienti con ARDS

$
0
0

fishbowlStress e strain sono due concetti sempre più ricorrenti nella ventilazione protettiva del paziente con Acute Respiratory Distress Syndrome (ARDS). Cerchiamo di capire se e come possono esserci utili nella pratica clinica.

Lo strain in fisica descrive la deformazione di un corpo rispetto alla sua struttura iniziale (figura 1).

Applicato al polmone possiamo intendere lo strain come il rapporto tra la deformazione applicata al polmone (cioè il volume corrente) rispetto al suo volume iniziale (cioè la capacità funzionale residua).

Strain

Figura 1

La figura 2 ci aiuta a ricordare che la Capacità Funzionale Residua (FRC, Functional Redisual Capacity) è il volume del polmone alla fine di una espirazione passiva completa.

functional-residual-capacity

Figura 2

Come sappiamo quando si parla di “capacità” (come nel caso della Capacità Funzionale Residua) in spirometria si intende la somma di volumi polmonari. In particolare la Capacità Funzionale Residua è la somma di Volume di Riserva Espiratoria (nella figura 2 ERV, Expiratory Reserve Volume, cioè il volume che possiamo espirare con un’espirazione massimale) ed il Volume Residuo (RV, residual volume, volume che non possiamo espirare, nemmeno con un’espirazione massimale).

Possiamo considerare la capacità funzionale residua come la dimensione iniziale di un contenitore nel quale andiamo ad aggiungere il volume corrente. A parità di volume corrente, un contenitore (cioè una capacità funzionale residua) più grande subirà una deformazione relativa (cioè uno strain) minore rispetto ad un contenitore di dimensioni minori (figura 3).

lung_volumes

Figura 3

Facciamo un esempio. Gino è un soggetto maschio adulto con un polmone sano (figura 4a) ed una capacità funzionale residua di 2500 ml. Gino ventila con un volume corrente di circa 500 ml, lo strain è quindi pari a 500 ml/2500 ml, cioè 0.2. Ipotizziamo che, sfortunatamente, a Gino una ARDS (figura 4b) determini la riduzione della capacità funzionale residua a 800 ml (di solito la gravità della ARDS è direttamente proporzionale alla riduzione della capacità funzionale residua).

rx torace normale vs ards

Figura 4

Se a Gino continuiamo a somministrare 500 ml di volume corrente (come quando era sano), avremo un rapporto volume corrente/capacità funzionale residua di 500 ml/800 ml, cioè uno strain di circa 0.63. Come a tutti i pazienti con ARDS, applichiamo a Gino anche una PEEP, che inevitabilmente contribuisce ad aumentare ulteriormente il volume polmonare al di sopra della capacità funzionale residua. L’incremento di volume indotto dalla PEEP si somma al volume corrente nella determinazione dello strain. Ipotizziamo di applicare 15 cmH2O di PEEP e che questo aumenti il volume polmonare di fine espirazione di circa 300 ml. In questo caso, se si mantiene costante il volume corrente a 500 ml, lo strain sarà quindi (500 ml + 300 ml)/800 ml, cioè 1.

Gino aveva uno strain di 0.2 quando era sano ed uno strain di 1 con l’ARDS, a parità di volume corrente: ha cioè quintuplicato la deformazione del polmone. Un fenomeno tutt’altro che trascurabile, poiché l’aumento dello strain sopra una soglia critica è un elemento determinante per il danno polmonare indotto dalla ventilazione.

E’ quindi importante misurare la capacità funzionale residua e determinare lo strain nei pazienti con ARDS? No, a mio personale parere: ad oggi non è stata identificato un convincente valore soglia di strain da non superare nella pratica clinica. Ed inoltre sappiamo che lo strain indotto dalla PEEP (definito anche strain statico) è meno dannoso dello strain associato al volume corrente (strain dinamico). Quindi, anche qualora fosse dato un valore soglia allo strain, saremmo in difficoltà a scorporare gli effetti della PEEP da quelli del volume corrente.

Il concetto di strain, anche se per ora sembra povero di chiare implicazioni pratiche, è comunque estremamente interessante dal punto di vista concettuale. Ci dice che il volume corrente deve essere proporzionale al volume del polmone ventilabile nei pazienti con ARDS: il volume corrente deve quindi essere adeguato, oltre che al peso ideale del paziente, anche alla gravità della ARDS.

Possiamo però riconoscere che in fondo un’informazione simile ci è offerta anche dalla cara, vecchia compliance (che caratterizza la ARDS fin dalla sua nascita, vedi post del 31/01/2016). Come sappiamo la compliance esprime la variazione di volume dell’apparato respiratorio per ogni cmH2O di pressione ad esso applicato e si misura dividendo il volume corrente per la differenza di pressione statica (cioè di plateau) tra inspirazione ed espirazione. Gino quando era sano probabilmente aveva una normale compliance dell’apparato respiratorio (circa 100 ml/cmH2O), quindi riusciva a ventilare i suoi 500 ml con 5 cmH2O di differenza di pressione tra inspirazione ed espirazione. Quando gli viene l’ARDS, la compliance si riduce a 30 ml/cmH2O (come quella di molti pazienti con ARDS). Meno di un terzo del normale, una riduzione proporzionalmente simile a quella della capacità funzionale residua, che si era ridotta da 2500 a 800 ml. Già quasi 30 anni fa è stato proposto è stato osservato che il valore di compliance corrisponde all’incirca alla percentuale di polmone rimasto normalmente aerato nei pazienti con ARDS (1). Quindi una compliance di 30 ml/cmH2O potrebbe grossolanamente indicare che il 30% del tessuto polmonare è rimasto normalmente ventilabile.

Pensiamo ora a quello che facciamo quando ventiliamo i pazienti con ARDS facendoci guidare dalla driving pressure (vedi post del 28/02/2015): quando scegliamo una PEEP per ridurre la driving pressure, altro non facciamo che aumentare quanto possibile la compliance. Dopo di questo, se necessario, limitiamo il volume corrente (e quindi la driving pressure) per evitare la comparsa di segni di sovradistensione.

Di solito lo strain è associato allo stress, che altro non è che la driving pressure. Stress e strain sono direttamente proporzionali: stress = k · strain.

Per quanto detto finora, questa equazione, relativamente all’apparato respiratorio, diventa: driving pressure = k ·VT/FRC.

Tradotta in italiano, l’equazione ci dice che tanto più è elevata la driving pressure, tanto maggiore è la deformazione che sta subendo il polmone. E’ stato osservato che il rischio di morte nei pazienti con ARDS aumenta quando la driving pressure supera i 15 cmH2O

Dopo quanto detto finora si può almeno intuire perché la costante di proporzionalità tra stress e strain è l’elastanza specifica, cioè il rapporto tra capacità funzionale residua e compliance. Possiamo quindi scrivere l’equazione nella sua forma finale: driving pressure = FRC/compliance · VT/FRC.

E qui ci fermiamo (almeno per oggi) perché ogni ulteriore approfondimento sarebbe interessantissimo, ma certamente non breve. Notiamo però che la driving pressure (una misura molto semplice) riassume in se tutti gli elementi fondamentali nella ventilazione protettiva.

Un’ultima precisazione. Quando misuriamo la pressione nelle vie aeree per calcolare compliance e driving pressure, ci riferiamo a tutto l’apparato respiratorio, tradizionalmente inteso come la somma di polmone e gabbia toracica. Se vogliamo riportare tutti questi concetti al solo polmone, invece della pressione delle vie aeree dobbiamo utilizzare la differenza tra pressione delle vie aeree e pressione esofagea.

Possiamo concludere che:

1) la scelta del volume corrente nel paziente con ARDS deve tener conto della dimensione del polmone che “accetta volentieri la ventilazione”. Questa può essere definita sia dalla capacità funzionale residua sia dalla compliance (che è simile alla percentuale di polmone rimasto normalmente aerato);

2) lo strain al momento è di difficile determinazione (bisogna misurare la capacità funzionale residua) e di vaga utilità clinica (non disponendo di valori soglia praticamente utilizzabili)

3) la driving pressure contiente in sé l’informazione dello strain, è facile da misurare e disponiamo di una possibile soglia di allarme utilizzabile nella pratica clinica (all’incirca sopra i 15 cmH2O).

Come sempre, un sorriso a tutti gli amici di ventilab.

Bibliografia

1) Gattinoni L et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987;136:730-6

2) Amato MB et al. Driving pressure and survival in the acute respiratory distress syndrome. New Eng J Med 2015; 372:747-55

Costante di tempo dell’apparato respiratorio

$
0
0

disequilibriumIl concetto di costante di tempo è affascinate ed ostico al tempo stesso. Come è nello stile di ventilab, cercheremo di rendere la costante di tempo facilmente accessibile e pratica, senza per questo toglierle nulla del suo fascino. Per fare questo, iniziamo prima a capire cosa si intende per costante di tempo dell’apparato respiratorio, quindi come utilizzare questo concetto durante la ventilazione meccanica. (Ho specificato che parleremo della costante di tempo dell’apparato respiratorio, perchè la costante di tempo non è esclusiva dell’apparato respiratorio ma è una caratteristica comune a tutti i processi con una cinetica esponenziale)

La costante di tempo descrive il tempo necessario e sufficiente per ottenere il 63% della variazione di volume dell’apparato respiratorio quando gli si applica una pressione di insufflazione costante o quando si ha una espirazione passiva. L’unità di misura della costante di tempo sono i secondi.

Figura 1

Figura 1

Facciamo un esempio per comprendere meglio cosa significa e quali sono i fattori che governano la costante di tempo (figura 1). Immaginiamo di avere un soggetto che ha terminato l’espirazione ed ha raggiunto la capacità funzionale residua. In quel momento nei suoi alveoli c’è una pressione pari a quella atmosferica, cioè 0 cmH2O. Applichiamo ora una pressione positiva continua all’apertura delle vie aeree, ad esempio di 20 cmH2O. La differenza di pressione tra ventilatore ed alveoli genera un flusso di gas, che va dal ventilatore (dove la pressione è più alta) agli alveoli (dove la pressione è più bassa). In questo modo i polmoni si riempiono di gas, aumentano il proprio volume ed inevitabilmente aumenta anche la pressione al loro interno. L’aumento di volume e pressione polmonare termina quando la pressione alveolare diventa uguale a quella applicata alle vie aeree, che nel nostro esempio corrisponde a 20 cmH2O. Di che entità deve essere l’aumento del volume polmonare per fare aumentare la pressione da 0 a 20 cmH2O? Ammettiamo che il soggetto in questione abbia una compliance di 100 ml/cmH2O. Questo significa che il volume polmonare aumenterà di 100 ml per ogni incremento di pressione di 1 cmH2O. A questo punto il calcolo è semplice: dopo l’applicazione di 20 cmH2O, il volume polmonare sarà aumentato di 20 volte la compliance, cioè di 2000 ml. Poichè la costante di tempo è il tempo necessario e sufficiente a far aumentare il volume dell’apparato respiratorio del 63% rispetto alla variazione finale, nel nostro esempio coincide con il tempo necessario per aumentare il volume dell’apparato respiratorio di 1260 ml.

Il tempo per raggiungere questa variazione di volume dipende dalla velocità con la quale il volume di gas si muove verso i polmoni, cioè dal flusso inspiratorio. Poichè il flusso dipende dalla resistenza (flusso= differenza di pressione/resistenza), tanto maggiore è la resistenza, tanto maggiore il tempo per ottenere la variazione di volume, cioè la costante di tempo.

Da quanto abbiamo detto è anche vero che tanto maggiore è la compliance, tanto maggiore la variazione di volume e quindi (a parità di resistenza) il tempo necessario per raggiungere il 63% di essa (cioè la costante di tempo). 

Figura 2

Figura 2

Vediamo ora la costante di tempo applicata all’espirazione. Il volume corrente inspirato (di qualsiasi entità esso sia) genera una pressione alveolare definita dal suo rapporto con la compliance. Siamo abituati a vedere questa pressione come la pressione di fine inspirazione, ma evidentemente la possiamo anche considerare la pressione di inizio espirazione, cioè la pressione alveolare a cui inizia la fase espiratoria. Facciamo l’esempio di un soggetto che ha compliance di 80 ml/cmH2O ed un volume corrente di 400 ml (figura 2). Come abbiamo visto in precedenza, la compliance descrive la variazione di volume associata ad una variazione di pressione di 1 cmH2O. Quindi, 400 ml di variazione di volume in un soggetto con 80 ml/cmH2O di compliance richiedono una variazione di pressione di 5 cmH2O (cioè volume/compliance). La pressione alveolare di inizio espirazione in questo caso sarà di 5 cmH2O (sopra PEEP) e rappresenta la forza che inizialmente “spinge” il flusso espiratorio. Più è alta la compliance, minore la pressione di inizio espirazione, minore la forza per “spingere” l’aria fuori dai polmoni, più lungo il tempo che serve per espirare il 63% del volume corrente, cioè la costante di tempo. Anche in questo caso un aumento della resistenza riduce il flusso espiratorio e quindi, a parità di compliance, aumenta la costante di tempo.

Risulta ora chiaro perchè la costante di tempo (normalmente definita dalla lettera greca τ, tau) dipenda esclusivamente da compliance (C) e resistenza (R), a tal punto da poter essere calcolata dal loro prodotto:

τ = C R

La costante di tempo è caratteristica di ogni singolo apparato respiratorio, indipendente dalla pressione applicata in inspirazione o dal volume espirato. Dopo 1 costante di tempo come abbiamo visto si raggiunge il 63% della variazione di volume all’equilibrio, dopo 3 costanti di tempo il 95% e dopo 5 costanti di tempo il 99%.

Nella pratica clinica non ci serve tanto sapere di quanti secondi è la costante di tempo di un paziente, ma piuttosto ci è utile una semplice valutazione qualitativa che ci dica se il paziente ha una costante di tempo “lunga” o “breve”, cioè se l’apparato respiratorio “si riempie” e “si svuota” lentamente (τ lunga) o velocemente (τ breve). E se questo processo si svolge in modo omogeneo all’interno dei polmoni.

Impariamo ora a riconoscere i pazienti con costante di tempo “breve” o “lunga”. Una premessa indispensabile: “breve” o “lungo” rispetto a cosa? Da un punto di vista clinico ritengo che il tempo inspiratorio ed il tempo espiratorio siano validi termini di riferimento per la definizione del concetto di “breve” o “lunga” riferito alla costante di tempo inspiratoria ed espiratoria. Una seconda premessa fondamentale è che la costante di tempo descrive solo fenomeni passivi e che quindi può essere valutata solo se il paziente inspira ed espira passivamente.

In inspirazione, la costante di tempo può essere valutata solo nelle ventilazioni pressometriche, anche a target di volume, poichè garantiscono una pressione di insufflazione costante.

I soggetti con costante di tempo “breve” hanno un flusso inspiratorio rapidamente decrescente che si conclude con una fase di zero flusso al termine della inspirazione. In espirazione, la costante di tempo può essere valutata indipendentemente dalla modalità di ventilazione e, come in inspirazione, i soggetti con costante di tempo “breve” hanno un flusso rapidamente decrescente che si azzera facilmente prima dell’inizio dell’inspirazione successiva (ad eccezione dei soggetti con tempo espiratorio molto breve) (Figura 3).

Figura 3

Figura 3

Nei soggetti con costante di tempo “lunga” invece il flusso inspiratorio (in ventilazione pressometrica) ed il flusso espiratorio decrescono lentamente, a tal punto che alla fine dell’inspirazione e dell’espirazione il flusso non si è azzerato (figura 4).

Figura 4

Figura 4

In pazienti con costante di tempo eccezionalmente lunga, il flusso inspiratorio in pressione controllata si riduce talmente lentamente da sembrare costante invece che decrescente, tanto da avere l’apparente paradosso di una ventilazione con onda quadra sia di flusso che di pressione (figura 5). Immagini come queste sono rare e ringrazio l’amico Guido Amodeo del S. Giovanni Bosco di Napoli per averla saputa cogliere, capire ed averla condivisa con me.

Figura 5

Figura 5

Per oggi mi fermo qui, abbiamo già messo molta carne al fuoco. Nel prossimo post cercheremo di capire insieme le implicazioni cliniche delle costanti di tempo nei pazienti sottoposti a ventilazione meccanica.

Come sempre, un sorriso a tutti gli amici di ventilab. E buone vacanze!

 

Costante di tempo e ventilazione a pressione controllata.

$
0
0

mario-santonastaso-pippoDopo aver delineato alcuni concetti teorici sulla costante di tempo dell’apparato respiratorio (vedi post del 30/06/2016), iniziamo a considerare una prima implicazione pratica.

Consideriamo due soggetti, Mario e Pippo, con una moderata ipertensione intracranica secondaria ad un trauma cranico. Mario e Pippo sono accomunati anche dalla sfortuna di avere avuto una ARDS secondaria ad aspirazione polmonare prima dell’intubazione. La differenza è che Mario non ha malattie polmonari croniche, mentre Pippo ha una broncopneumopatia cronica ostruttiva associata ad un enfisema polmonare. In termini di costante di tempo, Mario ha una costante di tempo breve (ha la bassa compliance e resistenze dell’apparato respiratorio lievemente aumentate, profilo tipico della ARDS), mentre Pippo ha una costante di tempo lunga (compliance più elevata di Mario per l’enfisema e resistenze marcatamente aumentate rispetto al normale).

Entrambi hanno la stessa impostazione della ventilazione meccanica: una pressione controllata di 17 cmH2O (sopra PEEP), PEEP di 10 cmH2O, frequenza respiratoria di 20/min e rapporto I:E di 1:1 (cioè l’inspirazione ha una durata pari all’espirazione).

Nella figura 1 vediamo le immagini di 10 secondi di monitoraggio grafico dei due pazienti. Dopo aver letto il post precedente, riconosciamo subito che il monitoraggio a sinistra è di Mario (il flusso, la traccia rossa, si riduce rapidamente fino ad azzerarrsi, quindi la costante di tempo è “breve”), mentre quello di destra è di Pippo (il flusso si riduce lentamente e non si azzera mai, quindi costante di tempolunga”).

Figura 1

Figura 1

Sia Mario che Pippo ottengono lo stesso volume corrente di circa 420 ml e quindi una identica ventilazione minuto di 8.4 litri. Ed entrambi sono ugualmente ipercapnici (PaCO2 55 mmHg). In considerazione della moderata ipertensione intracranica, si rende opportuno aumentare la ventilazione minuto per ridurre la PaCO2. Avendo i pazienti una ARDS, si preferisce aumentare la frequenza respiratoria piuttosto che il volume corrente. Pertanto in entrambi i casi la frequenza respiratoria è aumentata da 20/min a 30/min. Ci aspettiamo la stessa riduzione di PaCO2? Ovviamente no, per “colpa” della costante di tempo: con questa identica modificazione della ventilazione, la PaCO2 di Mario si riduce a 38 mmHg, mentre quella di Pippo a 51 mmHg.

L’aumento della frequenza respiratoria riduce sia in Mario che in Pippo la durata del ciclo respiratorio, da 3 a 2 secondi. (La durata del ciclo respiratorio si calcola semplicemente suddividendo i 60 secondi di cui è composto un minuto per la frequenza respiratoria, cioè il numero di atti respiratori in 1 minuto). Essendo il rapporto I:E=1:1, sia il tempo inspiratorio che quello espiratorio si riducono quindi da 1,5 secondi a 1 secondo.

Nella figura 2 possiamo valutare come cambiano le curve del monitoraggio grafico di Mario, quello con la costante di tempo “breve: a sinistra il monitoraggio con 20/min di frequenza respiratoria, a destra con la frequenza respiratoria aumentata a 30/min.

Figura 2

Figura 2

Osserviamo la traccia rossa del flusso. La riduzione del tempo inspiratorio (conseguente all’aumento della frequenza respiratoria) non impedisce che il flusso raggiunga lo zero a fine inspirazione (immagine a destra). Rispetto alla condizione con 20/min di frequenza respiratoria (immagine a sinistra) si è eliminata una fase in cui il flusso si manteneva sempre a zero (area evidenziata). Il flusso va visto come la velocità con cui il volume di gas entra nei polmoni: dal momento in cui questa velocità diventa zero, non vi è ovviamente più alcuna variazione di volume dell’apparato respiratorio. Quindi con l’aumento di frequenza respiratoria è rimasto costante il volume corrente, pertanto la ventilazione minuto è passata da 8.4 a 12.6 litri/min e la PaCO2 si è ridotta efficacemente da 55 a 38 mmHg.

Vediamo ora nella figura 3 il caso di Pippo, quello con la costante di tempo “lunga. A sinistra il moniraggio con 20/min di frequenza respiratoria, a destra la frequenza aumentata a 30/min.

Figura 3

Figura 3

L’aumento della frequenza respiratoria e la consensuale riduzione del tempo inspiratorio determinano la riduzione del volume corrente perché eliminano una fase dell’inspirazione in cui è ancora presente flusso, quindi passaggio di gas nei polmoni (area evidenziata).

Un secondo meccanismo contribuisce a ridurre il volume corrente: l’aumento dell’autoPEEP. Come il tempo inspiratorio, anche il tempo espiratorio si riduce. Pippo già con la frequenza respiratoria di 20/min aveva segni di espirazione interrotta precocemente (il flusso espiratorio non arriva allo zero all’inizio dell’inspirazione successiva) ed aveva una PEEP intrinseca di 3 cmH2O. Avendo una PEEP di 10 cmH2O, la sua PEEP totale (la somma di PEEP e autoPEEP) è quindi di 13 cmH2O. Ricordiamo che la PEEP totale è la pressione presente nell’apparato respiratorio all’inizio dell’inspirazione. La pressione che genera flusso (e volume) ad inizio inspirazione è la differenza tra la pressione nel ventilatore e quella nell’apparato respiratorio ad inizio inspirazione. Quando Pippo ha 20/min di frequenza respiratoria, questa pressione è di 14 cmH2O: 27 cmH2O è la pressione applicata dal ventilatore durante la fase inspiratoria (la somma di pressione controllata e PEEP) a cui si devono sottrarre i 13 cmH2O di PEEP totale. In altre parole 14 cmH2O spingono l’aria nei polmoni di Pippo ad inizio inspirazione. Quando la frequenza respiratoria aumenta a 30/min, la riduzione del tempo espiratorio determina una più precoce interruzione del flusso a fine espirazione (freccia nera tratteggiata) e quindi un aumento dell’autoPEEP, che nel nostro esempio diventa di 5 cmH2O, con una conseguente PEEP totale di 15 cmH2O. In questa condizione la differenza di pressione che genera il flusso diventa 12 cmH2O (27 cmH2O di pressione applicata dal ventilatore meno 15 cmH2O di PEEP totale) invece dei 14 cmH2O che avevamo calcolato con la frequenza respiratoria di 20/min: meno differenza di pressione, meno flusso, meno volume corrente.

Per l’effetto combinato di interruzione del flusso inspiratorio ed aumento della PEEP intrinseca, l’aumento della frequenza respiratoria da 20/min a 30/min si associa in Pippo ad una riduzione del volume corrente da 420 a 300 ml. In questo modo la ventilazione minuto aumenta molto poco, da 8.4 l/min a 9 l/min (ricordiamo che Mario aveva invece aumentato la ventilazione minuto a 12,6 l/min). Questo piccolo aumento della ventilazione è la causa della minima riduzione della PaCO2 di Pippo.

Cosa dobbiamo fare per risolvere il problema di Pippo ed abbassare la PaCO2 della stessa entità di quella di Mario? Dobbiamo inevitabilmente aumentare la pressione inspiratoria per ripristinare il volume corrente al valore iniziale. Nel nostro esempio dobbiamo arrivare a 22 cmH2O di pressione controllata sopra PEEP per tornare al volume corrente di 420 ml e quindi conseguire in Pippo lo stesso aumento di ventilazione (e quindi la stessa riduzione di PaCO2) di Mario (figura 4).

Figura 4

Figura 4

In questo post abbiamo discusso solo una delle molte implicazioni della costante di tempo nella pratica clinica. Per oggi mi sembra che basti. In futuro, riprenderemo l’argomento per riflettere su altri importanti ed interessanti fenomeni condizionati dalle costanti di tempo.

Proviamo a sintetizzare i punti salienti del post di oggi:

  1. la presenza o meno di una fase di zero flusso a fine inspirazione in ventilazione pressometrica controllata dipende dalla costante di tempo;
  2. in ventilazione a pressione controllata, se non si azzerano il flusso a fine inspirazione e/o a fine espirazione, le variazioni di frequenza respiratoria (e/o del rapporto I:E) possono determinare variazioni imprevedibili del volume corrente anche se si mantiene una pressione di insufflazione costante;
  3. quando si osserva una variazione indesiderata del volume corrente, questa può essere corretta modificando la pressione controllata impostata.

Un sorriso a tutti gli amici di ventilab.

 

PS: monitoraggio e valori di flusso, pressione, volume, autoPEEP e PaCO2 nelle varie condizioni analizzate nel post sono stati ottenuti utilizzando un modello matematico.


Il lavoro respiratorio

$
0
0

iceberg1La ventilazione meccanica ha due componenti pressorie principali: la PEEP ed il supporto inspiratorio (figura 1).

Figura 1

Figura 1

La PEEP ha una funzione statica che contribuisce a definire il volume minimo dell’apparato respiratorio, che viene raggiunto alla fine dell’espirazione. Il supporto inspiratorio è la pressione applicata sopra la PEEP e contribuisce alla genesi del volume corrente. Il supporto inspiratorio è alla base del lavoro respiratorio del ventilatore, un dato di scarsissimo interesse clinico. Infatti siamo solitamente interessati al lavoro respiratorio dei muscoli respiratori.

Vediamo l’esempio in figura 2.

Figura 2

Figura 2

A sinistra vediamo un soggetto che respira senza supporto inspiratorio (la linea tratteggiata bianca, che identifica la pressione inspiratoria, è allo stesso livello della PEEP), a destra invece lo stesso soggetto con 8 cmH2O di supporto inspiratorio (la linea tratteggiata bianca è più alta di 8 cmH2O rispetto alla PEEP). Notiamo che il volume corrente raggiunto nei due casi è costante (linea tratteggiata rossa sulla terza traccia). Non abbiamo difficoltà a capire che nello stesso paziente il lavoro respiratorio sia costante tra un respiro e l’altro se resta costante il volume corrente. Nelle due condizioni della figura 2 possiamo quindi ritenere che il lavoro respiratorio totale sia rimasto costante nelle due condizioni: a sinistra tutto il lavoro respiratorio è “occulto” ed è a carico del paziente; a destra vediamo anche il lavoro respiratorio del ventilatore (la pressione che si alza in inspirazione) e nulla sappiamo del lavoro respiratorio residuo rimasto a carico del paziente. Il lavoro respiratorio del paziente, invisibile al monitoraggio di base, è rilevabile solo con il monitoraggio della pressione esofagea, che stima la pressione sviluppata dai muscoli inspiratori. In altre parole, la pressione delle vie aeree nei soggetti in ventilazione assistita rappresente la punta dell’iceberg, la quota di pressione che emerge dal livello del mare (cioè dal livello di PEEP). Ma sotto questo livello possono esistere pressioni negative intrapleuriche talora nettamente superiori a quella positiva nelle vie aeree.

A titolo di esempio, guardiamo la figura 3.

Figura 3

Figura 3

Nella traccia superiore è rappresentato l’aumento della pressione delle vie aeree nella fase inspiratoria (attività del ventilatore), la secondra traccia è la concomitante caduta di pressione esofagea (attività del paziente), la terza il volume progressivamente inspirato.

Lavoro respiratorio e Pressure-Time Product.

Veniamo ora al lavoro respiratorio (Work of Breathing, WoB). Fino ad ora ne abbiamo parlato in termini vaghi, utilizzando questo termine per quantificare genericamente lo sforzo inspiratorio del paziente. In realtà il lavoro dal punto di vista fisico esprime un concetto ben preciso. Ricordiamo forse tutti che in fisica

L = F · s              (1)

cioè il lavoro L è il prodotto della forza F per lo spostamento s. Quindi esiste lavoro quando l’applicazione di una forza produce un movimento. Questo in un sistema lineare. Possiamo scrivere l’equazione del lavoro anche in questo modo:

L = F/cm2 · (s·cm2)       (2)

Abbiamo diviso la forza per una superficie (cm2) e moltiplicato lo spostamento per una superficie: semplificando i cm2, si può tornare facilmete all’equazione 1. E’ però utile questo semplice passaggio per capire cosa è il lavoro respiratorio. Infatti la forza applicata su una superficie (F/cm2) altro non è che una pressione P, ed il prodotto di un’area per una lunghezza (s.cm2) altro non è che un volume V:

L = P · V        (3)

Quindi il lavoro respiratorio è anche definito dal volume generato dall’applicazione di una pressione e la sua unità di misura è il joule (0.1 joule equivale a 1 litro per cmH2O). Lasciamo stare a questo punto matematica ed integrali, e passiamo ad una più intuitiva visualizzazione grafica del lavoro respiratorio.

Graficamente il lavoro respiratorio può essere espresso dal grafico pressione esofagea-volume (figura 4).

Figura 4

Figura 4

Il punto di inizio di questo grafico (punto A) è identificato da pressione e volume di fine espirazione. Nella figura 4 la pressione di fine espirazione è -5 cmH2O ed il volume coincide con la capacità funzionale residua (FRC). L’inspirazione procede con la progressiva riduzione della pressione pleurica (esofagea), ed ogni sua riduzione si associa ad un aumento del volume, relazione descritta dalla curva rossa che arriva al punto B, che conclude l’inspirazione.

L’area compresa entro la linea rossa povrebbe rappresentare il lavoro respiratorio, descrivendo le variazioni di volume derivate dalla variazione di pressione. Il mio parere assolutamente personale è che in effetti questa area possa da sola sufficientemente rappresentare il lavoro respiratorio. Ma la fisiologia ci complica un po’ la vita, e ci dice che il lavoro respiratorio totale in realtà deve comprendere anche l’area compresa tra la variazione di volume e la relazione statica pressione volume della gabbia toracica (linea verde tratteggiata). Non entro ora nel merito del significato del contributo della compliance della gabbia toracica sul lavoro respiratorio: se qualcuno sarà interessato, ne potremo discutere nei commenti al post. Il lavoro respiratorio viene normalmente espresso in lavoro per litro di ventilazione (WoB/L) o per minuto di ventilazione (WoB/min o Power of Breathing, PoB). Queste indicizzazioni però sono discutibili perché non consentono di confrontare il lavoro respiratorio ottenuto a diversi livelli di volume corrente (1,2). Per questi motivi trovo siano del tutto privi di razionale eventuali valori “normali” di lavoro respiratorio.

Il Pressure-Time Product (PTP) è una valida alternativa al lavoro respiratorio per quantificare l’attività dei muscoli inspiratori. Il Pressure-Time Product (si chiama così anche in italiano) è l’area identificata dalla deflessione inspiratoria della pressione esofagea nel tempo (figura 5):

Figura 5

Figura 5

tanto maggiore e tanto prolungata è la riduzione inspiratoria della pressione esofagea, tanto maggiore il Pressure-Time Product. Nella figura 5 il PTP è identificato dall’area tratteggiata obliqua, che inizia dela punto A (inizio inspirazione) e termina al punto B (fine inspirazione). Questo, a mio parere, potrebbe bastare, ma anche in questo caso, come nel lavoro respiratorio, si aggiunge una ulteriore area (quella con i puntini) che è delimitata in alto dalla pressione elastica della gabbia toracica (anche qui approfondiremo se sarà chiesto nei commenti). Il Pressure-Time Product si calcola per minuto di ventilazione, quindi si devono sommare tutti i PTP di un minuto per avere il suo valore. L’unità di misura sono quindi i cmH2O.s-1.min.

Utilizzo clinico di pressione esofagea, lavoro respiratorio e Pressure-Time Product.

La valutazione della pressione esofagea dovrebbe essere un elemento fondamentale durante la ventilazione assistita, soprattutto durante la ventilazione a pressione di supporto. Infatti scegliamo il supporto inspiratorio proprio per ridurre l’attività dei muscoli inspiratori. L’entità dell’attività dei muscoli respiratori è misurata con la riduzione che essi generano della pressione esofagea. Senza valutare la pressione esofagea non possiamo sapere di quanto stiamo “scaricando” di lavoro i muscoli inspiratori. Questa misurazione è probabilmente irrilivante nei soggetti che offrono poche problematiche ventilatorie, ma può diventare decisiva nei pazienti più complessi. Ricordiamo il concetto della punta dell’iceberg: la pressione applicata dal ventilatore (quella che vediamo sul monitoraggio pressorio del ventilatore) è solo la parte visibile della pressione che genera flusso e volume inspiratori; l’altra parte, quella sommersa, è invisibile al comune monitoraggio e dovrebbe costituire il criterio principale su cui dosare l’entità del supporto inspiratorio.

E’ sufficiente misurare la deflessione inspiratoria della pressione esofagea per quantificare questa attività oppure abbiamo bisogno di calcoli più complessi, come lavoro respiratorio o Pressure-Time Product?

Ritengo che, nella pratica clinica, lavoro respiratorio o PTP non aggiungano nulla all’informazione che ci offre la semplice rilevazione del calo inspiratorio della pressione esofagea (unita alla valutazione qualitativa della curva della pressione esofagea-tempo). Anzi, probabilmente esistono delle distorsioni matematiche possono complicare l’utilizzo di lavoro respiratorio e PTP (1-3).

_°_°_°_

Possiamo ora riassumere i punti salienti del post:

– l’attività dei muscoli respiratori (il loro “lavoro”) diventa visibile solo con la rilevazione della pressione esofagea;

– il livello di attività dei muscoli inspiratori può essere stimato dalla semplice misurazione della riduzione inspiratoria della pressione esofagea, dal lavoro respiratorio (area compresa tra pressione esofagea e volume) o dal Pressure-Time Product (area delimitata dalla variazione inspiratoria della pressione esofagea nel tempo);

a livello clinico, la semplice misurazione della deflessione inspiratoria della pressione esofagea può essere preferibile agli altri indici più complessi.

Un sorriso a tutti gli amici di ventilab.

 

Bibliografia.

  1. Natalini G et al. Analysis of the work of breathing-tidal volume relationship in a vitro model and clinical implications. J Clin Monit Comput 1999;15:119-23
  2. Natalini G et al. Effect of tidal volume and respiratory rate on the power of breathing calculation Acta Anaesthesiol Scand 2005; 49: 643-8
  3. Natalini G et al. Effect of breathing pattern on the pressure-time product calculation. Acta Anaesthesiol Scand 2004; 48: 642-7

VENTILAZIONE MECCANICA NELL’OBESO

$
0
0

Sora Lella la  conosciamo tutti, resa famosa da innumerevoli film di successo e dalla sua passione culinaria.  Non conosco il Body Mass Index (BMI) della sora Lella: il Body Mass Index è quell’indicatore che ci permette di categorizzare le persone obese e si calcola dividendo il peso per il quadrato dell’altezza. Il CDC di Atlanta definisce obesa una persona con un BMI ≥ 30, distinguendo tre classi (30 – 35; 35 – 40; ≥40). Se sora Lella fosse alta 160 cm per 110 Kg di peso avrebbe un BMI di 42. Qualunque fosse il BMI di sora Lella era sicuramente direttamente proporzionale alla sua boccaccesca simpatia.

Fig. 1

Se dovessimo sottoporre sora Lella a ventilazione meccanica la prima cosa di cui dobbiamo tenere conto è che, come mostrato nella Figura 1, la sua Capacità Funzionale Residua è nettamente ridotta a meno del 50% rispetto ad una persona con Body Mass Index di 20. Conseguentemente anche il Volume di Riserva Espiratorio (VRE) è gravemente ridotto. Come possiamo vedere nella figura 2 la Capacità Funzionale Residua è il volume che rimane nell’apparato respiratorio alla fine di una espirazione normale: se l’espirazione prosegue in modo massimale viene espirato il Volume di Riserva Espiratorio (VRE) portando l’apparato respiratorio al Volume Residuo (che è il volume che non possiamo in nessun caso espirare). L’apparato respiratorio dell’obeso è caratterizzato da una riduzione della Capacità Funzionale Residua. 

Fig. 2

Come si vede nella Figura 1 la Capacità Funzionale Residua ed il Volume di Riserva Espiratorio si riducono esponenzialmente al crescere del BMI[2].

 

 

 

Fig. 3

 

Fin dagli anni 60 sono stati pubblicati studi in cui veniva misurata la Compliance dell’apparato respiratorio (CRS) di soggetti obesi in respiro spontaneo: questi hanno riportato una ridotta Compliance del chest wall (Ccw) smentiti da altri su soggetti in respiro spontaneo e in anestesia. Ancora negli anni 90 Pelosi[3] riferisce, in soggetti obesi anestetizzati e dopo chirurgia addominale, una riduzione della Compliance del polmone (CL) e del chest wall.

 

 

Ho trovato perciò interessante un lavoro pubblicato qualche anno fa (2010) dal gruppo di Loring e Talmor che riporto in bibliografia[1]. La loro ipotesi è che i gravi obesi hanno una Pressione Pleurica (Ppl) più alta dei soggetti normali e che la Pressione esofagea è un utile indicatore della Pressione Pleurica. Studiano 50 soggetti con BMI > 38, confrontati con 10 soggetti normali, anestetizzati e paralizzati in posizione supina prima dell’inizio della chirurgia. Lo studio è piuttosto complesso (oltre ad utilizzare la misura diretta della Pressione esofagea utilizzano una misura dalla quale inferire la Pressione Pleurica) e non è mia intenzione analizzarlo in questa sede: voglio però condividere quello che, credo, di aver appreso dagli Autori. I ricercatori hanno anche misurato la Pressione Gastrica (PGa) in 30 soggetti obesi rinvenendo in 23 (= 76%) una PGa ≥ 10 cmH20. Pressione Gastrica e Pressione esofagea hanno tra loro una buona correlazione e la Pressione esofagea ha mostrato mediamente valori più alti: questo perché l’esofago, rispetto al fondo gastrico, è più vicino al piano del letto e subisce il peso del mediastino, inoltre la variabile tensione del diaframma rilasciato può modificare le pressioni in gioco. Inoltre dal BMI non è possibile predire il valore di Pressione esofagea. Il dato che ho fatto mio è che, in questi soggetti obesi, la CRS è ridotta per riduzione della CL mentre la Ccw è normale.

Tab. 1

Il fatto che la Ccw è normale nei soggetti obesi è argomentata dagli Autori con il “mass loading” (potremmo definirlo come il “peso che grava”) in alternativa allo “stiffening of the chest” tipico del lavoro elastico. Nell’obeso non c’è quindi un chest wall più rigido ma c’è semmai “più peso” sul (intorno al) polmone. E’ il grasso variamente ed imprevedibilmente disposto tra i visceri (nel mediastino dove pesa, letteralmente, sulla misura della Pressione esofagea e compete con il volume polmonare, tra i visceri sottodiaframmatici dove contribuisce al volume ed al peso che grava sul diaframma), sulla e nella parete toracica, dove pesa come colonna idrostatica rispetto all’esofago (dove misuriamo la Pressione esofagea) e sulle porzioni declivi del polmone. Utilizzando la Pressione esofagea come stima della Pressione Pleurica dobbiamo tenere conto che, in posizione supina, la Pressione esofagea è probabilmente più alta della Pressione Pleurica alla stessa altezza e che la Pressione Pleurica, in posizione supina, passa da negativa a meno negativa (o positiva) andando dalle regioni anteriori a quelle più prossime al piano del letto. L’assenza di correlazione tra BMI e Pes esprime la personale distribuzione del grasso corporeo (quindi anche nel mediastino, visceri addominali, strutture di parete e sottocute) e la variabile dislocazione del diaframma in torace. Nell’obeso supino la Pressione esofagea esprime quella pressione che circonda parte del polmone soprattutto a fine espirazione correlata ad un ridotto volume di fine espirazione (riduzione del volume aerato).

Questi sono i meccanismi che portano alla riduzione del volume polmonare, nel soggetto obeso anestetizzato, supino. La compliance esprime, come sempre, il volume aerato del polmone: nel caso della sora Lella il peso che grava intorno agli alveoli determina la chiusura delle porzioni più declivi e quelle più prossime al diaframma, porzioni teoricamente riapribili completamente.

Nel caso del paziente obeso da sottoporre ad anestesia le cose si complicano quando vengono ad aggiungersi fattori che possono modificare, in senso favorevole o sfavorevole, questa condizione: per esempio la possibilità della posizione seduta o la chirurgia open come condizioni favorevoli, di contro la necessità di Trendelenburg o lo pneumoperitoneo. Ma questo sarà oggetto di un prossimo post.

In pratica quale può essere un approccio ragionevole, se dovessimo anestetizzare sora Lella per un intervento chirurgico e sottoporla a ventilazione? Dobbiamo innanzitutto essere consapevoli, come emerso da studi epidemiologici, che i pazienti obesi sono particolarmente esposti all’utilizzo di volumi correnti maggiori di quelli fisiologici in rapporto alla loro altezza. L’impiego della PEEP resta il cardine del “trattamento”. Il valore di PEEP più indicato può essere individuato (se non possiamo fare l’occlusione di fine inspirazione) impostando una ventilazione a volume controllato con una pausa inspiratoria, frequenza fisiologica, verifica che il flusso espiratorio raggiunga il valore zero prima dell’inspirazione successiva, calcolando la Compliance dell’apparato respiratorio [ CRS  = volume inspiratorio / (Ppausa – PEEP impostata)], magari con PEEP incrementali (http://www.ventilab.org/2013/10/06/la-peep-nella-ards-tabelline-o-compliance/) compatibilmente con le condizioni cardiocircolatorie ed eventualmente la presenza di monitoraggio cruento della Pressione Arteriosa. Sceglieremo, a parità di Volume Corrente, il livello di PEEP associato alla minor differenza di pressione tra la pressione di plateau e la PEEP (cioè la driving pressure). In casi particolari potrebbe essere eventualmente utile la misurazione della pressione esofagea per stimare lo stress tidal e di fine espirazione.

 

In conclusione:

pazienti con Body Mass Index elevati, in posizione supina ed anestetizzati, sono caratterizzati da una riduzione esponenziale della Capacità Funzionale Residua, ovvero da un ridotto volume polmonare di fine espirazione.

Questa riduzione della Capacità Funzionale Residua può essere corretta utilizzando una PEEP appropriata valutandola attraverso la Driving Pressure; ovvero, per i diversi livelli di PEEP sperimentati a parità di volume corrente, utilizzando quella che comporta la migliore compliance dell’apparato respiratorio.

Un caro saluto a tutti i lettori di Ventilab.

 

Bibliografia

 

  1. Behazin N et al. Respiratory restriction and elevated pleural and esophageal pressures in morbid obesity. J Appl Physiol 108: 212–218, 2010.
  2. Pelosi P et al.The Effects of Body Mass on lung Volumes, Respiratory Mechanics, and Gas Exchange During General Anesthesia. Anesth Analg 1998;87:654-60.
  3. Pelosi P et al. Respiratory system mechanics in sedated, paralyzed, morbidly obese patients. J Appl Physiol (1985). 1997 Mar;82(3):811-8.
  4. Gattinoni L et al. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes?  Am J Respir Crit Care Med 1998;153:3-11.

Compliance: la relazione pressione-volume nella pratica

$
0
0

La relazione pressione-volume statica dell’apparato respiratorio (detta anche più familiarmente “curva di compliance“) è un fondamento indispensabile per la comprensione della ventilazione meccanica e della interazione paziente-ventilatore.

Costruire la curva di compliance nella realtà e ragionare su di essa è un ottimo modo per raggiungere la conoscenza pratica, cioè un vero e persistente arricchimento culturale e professionale. Vediamo quindi insieme come farlo al letto del paziente, con qualsiasi ventilatore meccanico.

Partiamo dando un significato alle parole: relazione pressione-volume statica dell’apparato respiratorio. “Relazione pressione-volume” significa semplicemente misurare di quanto aumenta il volume al variare della pressione: quando applico 1 cmH2O di pressione, di quanto aumenta il volume? Questa è la compliance. Ad esempio avere 50 ml/cmH2O di compliance significa che ad ogni cmH2O di aumento di pressione corrisponde un aumento di 50 ml di volume. Nella pratica otterremo questa informazione in maniera più semplice misurando quanto aumenta la pressione dopo l’erogazione di un volume noto.

Il termine “statica” definisce che la variazione di pressione è rilevata in assenza di flusso: cioè misuriamo la pressione nell’apparato respiratorio dopo un periodo di pausa che segue l’erogazione del volume. La durata della pausa deve essere sufficiente ad ottenere una pressione stabile (un plateau). In questo modo eliminiamo l’effetto delle resistenze e studiamo solo le pressioni che si sviluppano all’interno dell’apparato respiratorio.

La specifica “dell’apparato respiratorio” ci fa intendere che riferiamo le nostre misurazioni a polmoni e gabbia toracica considerati globalmente. Per la meccanica respiratoria, l’apparato respiratorio è usualmente semplificato in un modello costituito da due elementi: i polmoni inseriti nella gabbia toracica. La sola misurazione della pressione delle vie aeree consente di studiare l’apparato respiratorio nel suo complesso, senza poter identificare le singole caratteristiche di polmoni e gabbia toracica.

Dopo questa breve premessa, iniziamo a costruire concretamente la curva di compliance.

Iniziamo con un grafico vuoto che ci aiuta a capire meglio di cosa stiamo parlando.

Figura 1

Dovremo riempire il grafico con diversi volumi (asse verticale) misurando la corrispondente pressione statica (asse orizzontale). Importante capire cosa rappresentano il punto 0 di pressione e volume (sono entrambi zeri relativi): lo zero di pressione è relativo alla pressione atmosferica, lo zero di volume identifica il volume di rilasciamento (o equilibrio elastico) dell’apparato respiratorio, cioè il volume che l’apparato respiratorio raggiunge al termine di un’espirazione passiva completa che equilibra la pressione intrapolmonare con quella atmosferica. In assenza di iperinflazione dinamica, corrisponde alla capacità funzionale residua.

Ora immaginiamo di ventilare un paziente passivo alla ventilazione meccanica (nessun segno di attività dei muscoli respiratori al monitoraggio grafico ed alla valutazione clinica). Modifichiamo temporaneamente l’impostazione del ventilatore meccanica: azzeriamo la PEEP e riduciamo la frequenza respiratoria (mantenendo un tempo inspiratorio di circa 1 secondo) fino ad ottenere un tempo espiratorio sufficiente ad evitare l’autoPEEP (il flusso espiratorio cioè diventa zero prima dell’inizio dell’inspirazione successiva). Quest’ultima condizione può essere facilmente raggiunta in quasi tutti i pazienti con una frequenza respiratoria di 10-15/minuto. Eseguiamo un’occlusione delle vie aeree a fine inspirazione e manteniamola 3″, tempo solitamente sufficiente ad ottenere la stabilizzazione della pressione delle vie aeree su un plateau. La pressione rilevata durante il plateau, alla fine dei 3″ di occlusione, è la pressione di plateau. Nota pratica: tutte le occlusioni devono avere la medesima durata per garantire che le diverse pressioni di plateau siano rilevate a parità di condizioni.

Procediamo ora con un esempio pratico, analizzando la costruzione della curva di compliance in un paziente con ARDS grave.

Figura 2

Nella figura 2 possiamo visualizzare tutti gli elementi descritti quando il paziente che riceve 500 ml di volume corrente e sviluppa 15 cmH2O di pressione di plateau. Possiamo riportare il risultato sul grafico pressione-volume dell’apparato respiratorio.

Figura 3

Figura 4

Per costruire una relazione pressione-volume è necessaria una serie di punti. Più punti ci sono, più si aumenta la precisione della relazione. Dobbiamo quindi somministrare in rapida successione diversi volumi correnti (possiamo tenere ciascuno solo un minuto) ed eseguire per ogni volume corrente la manovra di occlusione decritta sopra. E’ opportuno che il volume più piccolo porti ad ottenere non più di 2 cmH2O di pressione di plateau e che il più alto abbia superato la soglia di sovradistensione (almeno 2-3 volumi correnti con stress index superiore a 1) o raggiunga una pressione di plateau di 40 cmH2O. Per avere una accettabile relazione pressione-volume di solito sono sufficienti 12-15 diversi volumi correnti, che si ottengono con una differenza di 50-100 ml tra l’uno dall’altro. E’ infine utile alternare volumi alti e volumi bassi per evitare significativi periodi di ipoventilazione durante l’applicazione dei volumi correnti più bassi. Qui a fianco possiamo vedere la sequenza delle occlusioni nel nostro paziente con ARDS: il maggior volume corrente utilizzato (700 ml) è chiaramente associato a segni di sovradistensione (già presenti anche a volumi inferiori). Esso è seguito dal volume corrente minimo, sufficiente ad ottenere non più di 2 cmH2O di pressione di plateau. Da questo punto iniziamo una alternanza di volumi correnti alti e bassi che progressivamente calano di 50 ml dal massimo o aumentano 50 ml dal minimo. Come possiamo vedere la pressione di plateau (Pplat) è semplicemente letta sul diplay del ventilatore in tempo reale durante l’occlusione. Abbiamo applicato 13 diversi volumi correnti, che significano realisticamente (con un po’ di esperienza) una ventina di minuti complessivi di lavoro.

Figura 5

Ora dobbiamo costruire il grafico. Potremmo anche utilizzare carta (un foglio a quadretti o, meglio, di carta millimetrata) e penna  come si faceva in tempi eroici. Ma oggi è molto meglio aprire un foglio elettronico e inserire i risultati su due colonne: nella prima la pressione di plateau, nella seconda il corrispondente volume corrente, come mostrato in figura 5.

Il passaggio finale è la creazione del grafico sul foglio elettronico: finalmente vedremo il risultato del nostro lavoro e trarremo alcune conclusioni che ci potranno aiutare nelle scelte di ventilazione meccanica.

Ecco la relazione pressione-volume statica dell’apparato respiratorio del paziente che stiamo vedendo come esempio:

Figura 6

Osserviamo che gli aumenti di pressione-volume fino a 18 cmH2O-600 ml possono essere ben raggruppati lungo una linea retta (linea tratteggiata grigia in figura 7). Questa linea però non includerebbe i punti oltre i 18 cmH2O-600 ml, che si troverebbero più in basso. Questi punti sono meglio rappresentati da una linea meno pendente (linea tratteggiata rossa in figura 7).

Figura 7

La pendenza di ciascuna delle due rette è una compliance, infatti esprime la variazione in ml per cmH2O: bassa pendenza = bassa compliance, alta pendenza = alta compliance. La linea grigia è una compliance di 31 ml/cmH2O, cioè il rapporto tra la variazione di volume di 500 ml (da 100 a 600 ml) e la variazione di pressione di 16 cmH2O (da 2 a 18 cmH2O). La linea rossa identifica una compliance di 14 ml/cmH2O.

Figura 8

Volendo essere pignoli, dopo aver visto nella figura 6 che 18 cmH2O-600 ml sono il “punto di rottura” della linea, possiamo riscrivere nel foglio elettronico i dati come vediamo in figura 8. Creiamo due colonne di volume, una con i dati sulla prima linea di pendenza ed una con i dati sulla seconda linea di pendenza. Il valore 18 cmH2O-600 ml compare in entrambe le colonne perchè appartiene ad entrambe.

Se creaimo ora il grafico (figura 9), avremo una serie di punti per la prima (in grigio) ed una per la seconda pendenza (in rosso). E potremo chiedere al foglio elettronico di disegnare la retta della pendenza di ciascuna delle due serie, di mostrare l’equazione di questa retta (che è la relazione pressione-volume) ed il coefficiente di determinazione (R2). Vediamo e commentiamo il risultato, rendendolo semplice e comprensibile per tutti.

Figura 9

Le rette che ha disegnato il folgio elettronico sono molto simili a quelle che abbiamo disegnato ad occhio nella figura 7 (quindi noi ed il computer siamo d’accordo!). Vicino ad esse c’è una equazione, che ci deve lasciare tranquilli: il coefficiente della x (nel riquadro blu) è la compliance calcolata sulla retta (praticamente identica a quella che ci siamo calcolati in precedenza, anche questa una conferma dei risultati). Il valore di R2 ci informa di quanto la variazione di volume possa essere spiegata dalla variazione di pressione, in parole povere quanto sia buona la correlazione tra pressione e volume. Un R2 maggiore di 0.9 è un’ottimo risultato perchè significa che la relazione pressione-volume è accurata e non ci stiamo inventando relazioni che non esistono: nel nostro caso abbiamo un’ottima correlazione per entrambe le rette (anche se quella rossa è fatta solo con 3 punti…). Con questo approccio più “matematico” non abbiamo aggiunto nulla di nuovo, ma ci sentiamo tranquilli che le nostre valutazioni occhiometriche non erano forzate. In questo grafico vediamo che l’incrocio tra le due rette, che viene normalmente definito punto di flesso superiore, si verifica ad un livello di pressione leggermente inferiore a 18 cmH2O (linea verticale blu tratteggiata in figura 9).

Ed ora cosa ce ne facciamo di tutto il nostro lavoro? In questo paziente con ARDS è assente il punto di flesso inferiore, manca cioè alle pressioni più basse una linea con compliance inferiore alla massima pendenza. Nei pazienti con punto di flesso inferiore (ci capiterà prossimamente di vederne qualcuno), la PEEP dovrebbe essere leggermente superiore (un paio di cmH2O) alla pressione a cui lo osserviamo. Al contrario, i pazienti senza punto di flesso inferiore (come il nostro) si giovano di bassa PEEP, che potremmo quindi decidere di mettere a 5 cmH2O (meglio se la rivalutiamo con un trial di PEEP per scegliere quella associata alla minor driving pressure, vedi post del 28/2/2015 e del 18/10/2015). Sappiamo inoltre che dovremmo evitare pressioni di plateau superiori a 17 cmH2O (un valore decisamente minore dei 30 cmH2O raccomandati dalle linee guida…). La variazione di pressione da 5 (PEEP) a 17 cmH2O (massima pressione di plateau tollerata) è di 12 cmH2O. Con una complinace di 31 ml/cmH2O, questo corrisponde ad una variazione tidal di volume di circa 370 ml. Questa potrebbe essere un’impostazione razionale del ventilatore meccanico, ricordando che i 5 cmH2O sono sempre di PEEP totale. Quando aumentiamo la frequenza respiratoria dopo la costruzione della curva di compliance, probabilmente genereremo autoPEEP: dovremo quindi riaggiustare la PEEP e misurare la PEEP totale con l’occlusione a fine espirazione per portarla ai 5 cmH2O che ci siamo posti come obiettivo.

La logica di questo approccio è stata utilizzata in alcuni trial clinici (1-3) che, complessivamente, hanno portato a risultati migliori rispetto alla sola riduzione del volume corrente  (4) (l’unica differenza riguarda la scelta della PEEP nei pazienti senza punto di flesso inferiore).

L’applicazione della PEEP può modificare la curva di compliance e rendere più complesso il ragionamento. Ma su questo avremo modo di confrontarci prossimamente, per oggi penso basti così.

Vorrei concludere invitando tutti a ricavare la curva di compliance sui propri pazienti e ricavarne informazioni clinche utili per la ventilazione. Le prime volte certamente non si raggiungerà la perfezione, ma dopo poche esperienze alcuni concetti fondamentali si chiariranno e si scolpiranno nella propria conoscenza e capacità clinica. Un consiglio: alle prime esperienze, evitare pazienti con ipossiemia molto grave: se non si è rapidi e coordinati nella procedura (cosa che si acquisisce con la pratica), le fasi a basso volume corrente senza PEEP potrebbero non essere semplicissime. Presto valuteremo anche approcci più veloci per costruire la curva di compliace, ma vale la pena affrontarli dopo aver digerito questo approccio classico.

Come sempre, un sorriso a tutti gli amici di ventilab.

 

Bibliografia
1) Amato MB et al. Effect of a protective-ventilation strategy on mortality in the Acute Respiratory Distress Syndrome. N Engl J Med 1998; 338:347-54
2) Ranieri VM et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282:54-61
3) Villar J at al. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: A randomized, controlled trial. Crit Care Med 2006; 34:1311-8
4) ARDS Network. Ventilation with lower tidal volumes as compared with traditional for acute lung injury and the acute respiratory distress sindrome. N Engl J Med 2000, 342:1301-8

La chiave di accesso a tutte le forme di ARDS: la capacità funzionale residua e il suo effetto sulla compliance.

$
0
0

Come abbiamo visto l’ARDS è una sindrome che può presentarsi in maniera molto differente, influenzata sia dalla malattia che l’ha indotta che dalle caratteristiche del paziente.

Tutte le ARDS hanno però una fondamentale caratteristica comune: la riduzione del volume polmonare. In particolare si riduce il volume di aria contenuto nei polmoni alla fine della espirazione, cioè la capacità funzionale residua  (functional residual capacity, FRC).

Figura 1

Tutte le ARDS hanno una riduzione della FRC, ma non tutte della stessa entità: in alcuni casi è più grave, in altri meno. Questo avrà implicazioni cliniche rilevanti, che vedremo nel prossimo post.

Al letto del paziente tutti possiamo avere un’idea dell’entità della riduzione di FRC: in prima approssimazione, tanto maggiore è la riduzione della FRC, tanto maggiore è la riduzione della compliance.

La compliance (C) si misura al letto del paziente dividendo il volume corrente per la differenza tra pressione di plateau e PEEP (PEEP totale), cioè per la driving pressure (dP): C = VT/dP.

(E’ necessaria una precisazione: tutto quanto diciamo dovrebbe teoricamente essere riferito al solo polmone e non all’intero apparato respiratorio. In altre parole, la pressione di riferimento non dovrebbe essere la pressione delle vie aeree che misuriamo sul ventilatore meccanico, ma la pressione transpolmonare, cioè la differenza tra pressione delle vie aeree e pressione pleurica. Ma a fini clinici anche ragionare sulle pressioni delle vie aeree può offrire informazioni utili nella pratica clinica, con alcune eccezioni che vedremo nel prossimo post.)

Siamo abituati a pensare alla compliance come ad una misura di “durezza” dei polmoni: di solito si pensa che più si riduce la compliance, più diventano “duri”, “rigidi” i polmoni. In realtà è più corretto pensare la compliance come un indice di riduzione della FRC.

Facciamo un esempio. Un soggetto sano ha una compliance di circa 120 ml/cmH2O (1), il che significa che applicando una pressione di 1 cmH2O si aumenta il volume di polmoni di 120 ml.  La sua una capacità funzionale residua di circa 2000 ml. Immaginiamo di avere due polmoni, destro e sinistro, di identiche dimensioni, come nella figura 2, ciascuno dei quali contiene quindi 1000 ml a fine espirazione.

Figura 2

Se ventiliamo questo soggetto con 600 ml di volume corrente, avremo una pressione alveolare di 5 cmH2O (C=VT/P, cioè P=VT/C), sia nel polmone destro che nel polmone sinistro.

Il polmone destro, come il sinistro, hanno ricevuto ciascuno la metà del volume corrente (300 ml) ed ha aumentato la pressione di 5 cmH2O. La compliance di ciascun polmone è quindi 60 ml cmH2O (300 ml / 5 cmH2O).

La compliance di tutto l’apparato respiratorio è la somma delle compliance delle singole unità polmonari. Questo significa che quando si riduce il numero delle unità alveolari si riduce necessariamente la compliance dei polmoni.

Figura 3

Troviamo facilmente conferma di questo se analizziamo cosa succede se si esclude dalla ventilazione uno dei due polmoni, cioè se si dimezza la FRC (figura 4).

Figura 4

Tutti i 600 ml vanno a finire nell’unico polmone ventilato, che ha la stessa compliance che aveva in precedenza, cioè 60 ml/cmH2O. La pressione alveolare che si sviluppa in questo caso è di 10 cmH2O (cioè VT/C): questa è diventata anche la pressione di tutto l’apparato respiratorio, la cui compliance totale si è dimezzata a 60 ml/cmH2O.

Il polmone non è diventato “più rigido”, è diventato solo più piccolo. E’ il concetto del baby lung.

Vediamo la stessa cosa con un altro esempio. La compliance dei neonati è espressa in cmH2O/ml per kg di peso ed ha un valore mediamente di 1.6 cmH2O/ml/kg (2). In un neonato di 3.5 kg la compliance è quindi circa 6 ml/cmH2O, un valore bassissimo rispetto ai 120 ml/cmH2O dell’adulto. Vuol dire che il neonato ha dei polmoni molto rigidi o solamente molto piccoli? 

Calcoliamo la compliance per kg di peso, come si fa nel neonato, nell’adulto con peso ideale di 75 kg e 120 ml/cmH2O di compliance. Otteniamo 1.6 cmH2O/ml per kg, lo stesso valore del neonato.

Se vogliamo essere più precisi, parliamo di compliance specifica (cioè la compliance in rapporto alla FRC), che nel neonato è  0.06 ml∙cmH2O-1∙ml-1 (1). Possiamo facilmente calcolarla anche nell’adulto, con i dati che abbiamo utilizzato in precedenza: 120 ml/cmH2O / 2000 ml = 0.06 ml∙cmH2O-1∙ml-1, anche in questo caso lo stesso valore del neonato. 

Adulto e neonato hanno compliance assolute diverse, ma una uguale compliance relativa alla dimensione del polmone. Questi dati supportano ulteriormente che la compliance specifica (quella relativa alla dimensione del polmone) rappresenta la “rigidità” del polmone, la compliance totale (quella che misuriamo noi) è invece un indicatore di volume aerato, cioè di FRC.

Da tutto ciò deriva che la riduzione di capacità funzionale residua dovrebbe essere l’indicatore della gravità della ARDS e dovrebbe fare parte della sua definizione. Non essendo facile da misurare, nella clinica può essere sostituita dalla compliance: le ARDS con bassa compliance sono quelle con la maggior riduzione di FRC, quelle con compliance meno ridotta hanno avuto una minor riduzione di FRC. 

Nella ARDS da COVID-19 alcuni pazienti hanno avuto riduzioni moderate della compliance, mantenendosi tra i 40 e 50 ml/cmH2O, un valore comunque inferiore alla normalità.

Figura 5

Ma questo non è un dato eccezionale, accade anche in molte ARDS non associate a COVID-19, come ad esempio nel caso (che presento ad alcuni corsi di ventilazione) di un collega ed amico che ha avuto una ARDS grave (PaO2/FIO2 < 100 mmHg) secondaria a polmonite dopo un trauma toracico: la compliance era 45 ml/cmH2O (TC in figura 5). Questo dato non è nuovo, già in un articolo di quasi 30 anni fa sulla meccanica respiratoria dei pazienti con ARDS  si vedeva c1/4 di essi aveva una compliance di 45-50 ml/cmH2O (3). Nulla di strano, quindi.

Ma è proprio vero che i pazienti con ARDS da COVID-19 hanno una “buona” compliance? Sto analizzando i dati dei pazienti con COVID-19 intubati e ventilati negli ultimi 2 mesi nel mio reparto. Mediamente la compliance è bassa il primo giorno di ricovero (circa 30 ml/cmH2O). Anche i pazienti con ARDS da COVID-19 hanno spesso una bassa compliance. Alcuni hanno compliance con riduzioni moderate, altri invece con riduzioni molto più gravi. I primi casi che ho trattato mi avevano dato l’impressione di un maggior numero di casi a compliance moderatamente ridotta (comunque sempre più bassa del normale), ma continuando a curare tanti pazienti l’impressione è cambiata ed i dati lo confermano.

La conclusione è che tutte le ARDS si associano ad una riduzione della capacità funzionale residua, la quale si esprime anche con la riduzione della compliance. La riduzione della capacità funziona residua, più o meno marcata, è il comune denominatore della Acute Respiratory Distress Syndrome, indipendentemente dalla malattia che l’ha determinata.

La capacità funzionale residua ed il suo effetto sulla compliance è la chiave d’accesso a tutte le forme di ARDS, che può consentire un approccio unitario e razionale alla ventilazione della ARDS da qualsiasi malattia, COVID-19 e non COVID-19. Di questo parleremo tra pochi giorni nel prossimo post.

Come sempre, un sorriso a tutti gli amici di ventilab. Fa bene a chi lo fa e fa bene a chi lo riceve…

Bibliografia.

  1. Naimark A. Compliance of the respiratory system and its components in health and obesity. J Appl Physiol 1960; 15:377-82
  2. ATS/ERS. Respiratory Mechanics in Infants: Physiologic Evaluation in Health and Disease. Am Rev respir Dis 1993; 147:474-96
  3. Eissa NT, Ranieri VM, Corbeil C, et al.: Analysis of behavior of the respiratory system in ARDS patients: effects of flow, volume, and time. Journal of Applied Physiology 1991; 70:2719–2729

P0.1 (pressione di occlusione delle vie aeree): cosa è, come utilizzarla.

$
0
0

Molti amici di ventilab mi hanno chiesto di dedicare un po’ di spazio alla P0.1. Volentieri affronto quindi l’argomento, anche perchè la possibilità di misurare la P0.1 è sempre più frequente sui nostri magnifici ventilatori meccanici. E, come tutte le cose, la si deve conoscere bene per usarla in maniera appropriata.

La P0.1 è sempre stata un oggetto un po’ misterioso per chi non si dedica specificatamente alla fisiopatologia respiratoria. Ricordo a tal proposito un episodio che risale ad oltre 20 anni fa: ad un congresso un chairman poco esperto di fisiopatologia respiratoria doveva moderare una sessione in cui c’era una relazione sulla P0.1, che fu presentata in questo modo: “Ed ora abbiamo il piacere di sentire una interessantissima relazione del dott. xxxxxxx sulla PO1″ (il problema fu che invece di “zero” lesse “O” come la lettera dell’alfabeto!). Niente di male, solo la sfortuna di doversi occupare (soprattutto allora) di un argomento spesso riservato agli “iniziati”….

Cosa è la P0.1

La P0.1, che nella letteratura scientifica è chiamata anche pressione di occlusione delle vie aeree (airway occlusion pressure), è la misura della riduzione della pressione (P) delle vie aeree nel primo decimo di secondo (da qui il nome 0.1) di un’inspirazione con vie aeree occluse.

Chiariamo meglio il concetto con una rappresentazione grafica. Guardiamo la seconda curva (quella della pressione delle vie aeree Paw) nella figura a lato. La prima linea tratteggiata verticale indica il momento in cui inizia un’inspirazione triggerata dal paziente. Per misurare la P0.1 questa inspirazione deve iniziare contro una via aerea occlusa per almeno 0.1 secondi ed il paziente deve essere ignaro di questa occlusione. Essendo la via aerea occlusa, in questi 0.1 secondi il paziente non riceverà alcuna insufflazione dal ventilatore (non riuscirà quindi nemmeno ad attivare il trigger) e si avrà una riduzione della pressione nelle vie aeree. La differenza di pressione delle vie aeree tra valore di fine espirazione e quello rilevato dopo 0.1 secondi di occlusione è la P0.1.

Perchè il paziente non deve essere consapevole di questa occlusione? Perchè proprio 0.1 secondi? La P0.1 viene proposta come misura del drive respiratorio centrale, cioè del livello di attivazione del centro del respiro. Tanto maggiore è il drive respiratorio, tanto maggiore sarà la forza con cui i muscoli respiratori si contraggono e quindi la depressione che essi generano contro una via aerea occlusa. A noi interessa quindi la pressione sviluppata dai muscoli respiratori per effetto della sola attività involontaria del centro respiratorio. Quindi tutte le influenze corticali devono essere abolite e per ottenere questo risultato il soggetto deve essere inconsapevole. Quando però occludiamo le vie aeree, introduciamo una perturbazione rispetto alla normale attività respiratoria che potrebbe essere percepita dal soggetto e quindi modificarne l’output del centro respiratorio. Si ritiene però che nel breve lasso di tempo di 0.1 secondi l‘occlusione non sia percepita e quindi l’attività dei muscoli respiratori non possa essere influenzata. Nello studio di Whitelaw, Derenne e Milic-Emili che introdusse la P0.1 nella fisiologia applicata , si osservò che solo dopo 0.25 secondi si notavano segni suggestivi di modificazioni dell’attività del centro del respiro indotte dall’occlusione delle vie aeree.

Limiti della P0.1.

Ammetto di avere una certa diffidenza verso la P0.1. Prima di tutto perchè ritengo che non sia mai stato dimostrato in modo convincente che la P0.1 sia un buon indicatore quantitativo del drive respiratorio.

Nello storico studio di Whitelaw sono stati arruolati solo 10 giovani maschi sani di età compresa tra i 15 ed i 34 anni ed è stata solamente valutata la variazione della P0.1 con l’ipercapnia. Nemmeno studi successivi non hanno mai chiaramente validato la P0.1 come misura del drive respiratorio.

Inoltre nei pazienti con disturbi neuro-muscolari la P0.1 può non riflettere il drive respiratorio: anche se questo fosse elevato, la capacità di generare pressione da parte dei muscoli respiratori è ridotta a causa del danno nervo-muscolare. E siamo ormai sempre più consapevoli che questo è un problema frequente in Terapia Intensiva (ICU-acquired weakness, ventilatory induced diaphragmatic dysfunction). A questo va aggiunto che la P0.1 può essere alterada variazioni del volume polmonare di fine espirazione (generate dalla PEEP o dalla PEEPi), che possono alterare la relazione tra tensione muscolare e pressione sviluppata.

Infine l’utilizzo della P0.1 nella ricerca clinica è stato a volte improprio e comunque ha portato a risultati contrastanti: quindi pochissimi dati convincenti dalla letteratura scientifica.

Utilizzo pratico della P0.1.

Consapevoli di questi limiti, la P0.1 può essere comunque di aiuto al letto del paziente. Vediamo un possibile approccio pratico all’utilizzo della P0.1.

1) P0.1 < 1-2 cmH2O.
Analizzando il resto dei dati a nostra disposizione, dobbiamo capire quale di queste tre condizioni è vera:
a) l’assistenza ventilatoria è eccessivamente elevata: questo mette “a riposo” il centro del respiro e quindi la P0.1 è bassa. Implicazione pratica: riduciamo il livello di supporto; se quest’ultimo non fosse in realtà molto elevato, potrebbe essere una buona idea far fare al paziente un bel trial di respiro spontaneo (se tutte le altre condizioni per il weaning sono presenti);
b) il paziente è sedato: la sedazione deprime il centro del respiro, puoi usare la P0.1, insieme agli altri monitoraggi, per ottimizzare il livello di sedazione;
c) il paziente è affetto da debolezza muscolare: questo è da sospettare soprattutto se la riduzione del supporto inspiratorio determina un respiro rapido e superficiale associato a bassi valori di P0.1. In questo caso è utile misurare la MIP (maximum inspiratory pressure)  o la NIF (negative inspiratory force) con uno sforzo massimale del paziente a vie aeree chiuse.

2) P0.1 > 5-6 cmH2O.
In questo caso l’interpretazione è più semplice: il drive respiratorio è elevato, in altre parole il cervello del paziente “sente” fame d’aria e stimola il paziente a respirare intensamente. Quando abbiamo una P0.1 elevata, il paziente ha elevate è probabilità di fallire lo svezzamento dalla ventilazione meccanica; dovremo anzi incrementare il supporto ventilatorio (o fare un uso giudizioso deilla sedazione).

Per valori intermedi (quindi 3-4 cmH2O), la P0.1 offre una segnale facilmente interpretabile.

Possiamo quindi concludere che la P0.1 non è un numero magico (come del resto pochi ce ne sono in medicina), ma che può, nell’ottica di una valutazione multiparametrica della ventilazione, migliorare la nostra conoscenza del paziente ventilato e quindi il modo di utilizzare la ventilazione meccanica.

Un caro saluto a tutti.

Bibliografia.

– Alberti A et al. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 1995; 21:547-53
– Berger KI et al. Mechanism of relief of tachypnea during pressure support ventilation. Chest 1996; 109:1320-7
– Del Rosario N et al. Breathing pattern during acute respiratory failure and recovery. Eur Respir J 1997; 10:2560-5
– de Souza LC et al. Comparison of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the prediction of weaning outcome: impact of the use of a digital vacuometer and the unidirectional valve.Respir Care 2012; 57:1285-90
– Fernandez R et al. P0.1/PIMax: An index for assessing respiratory capacity in acute respiratory failure. Intensive Care Med 1990; 16:175-9
– Fernandez R et al. Extubation failure: Diagnostic value of occlusion pressure (P0.1) and P0.1-derived parameters. Intensive Care Med 2004; 30:234-40
– Hilbert G et al. Airway occlusion pressure at 0.1 s (P0.1) after extubation: An early indicator of postextubation hypercapnic respiratory insufficiency. Intensive Care Med 1998; 24:1277-82
– Mancebo J et al. Airway occlusion pressure to titrate Positive End-expiratory Pressure in patients with dynamic hyperinflation. Anesthesiology 2000; 93: 81-90
– Milic-Emili J et al. Occlusion pressure: a simple measure of the respiratory center’s output. N Engl J Med 1975; 293:1029-30
– O Perrigault PF et al. Changes in occlusion pressure (P0.1) and breathing pattern during pressure support ventilation. Thorax 1999; 54:119-23
– Sassoon CSH et al. Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis 1993; 148:860-6
– Whitelaw WA et al.Occlusion pressure as a measure of respiratory center output im conscious man. Respir Physiol 1975; 23:181-99

Viewing all 20 articles
Browse latest View live